首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Erwinia chrysanthemi 3937 (Ech3937) is a phytopathogenic bacterium with a wide host range. The pectinolytic enzymes secreted by the bacterium and the type III secretion system (T3SS) are essential for full virulence. We used the green fluorescent protein gene as a reporter to investigate the expression of dspE (a putative T3SS effector) and pelD (a major pectin-degrading enzyme) in populations of Ech3937 under different conditions. Gene expression was analyzed by measuring the fluorescence intensity of individual cells with a fluorescence-activated cell sorter. Ech3937 dspE was induced in minimal medium (MM) with only a portion of Ech3937 cells (43.03%) expressing dspE after 12 h of culture. The nutrient-rich King's medium B did not fully eliminate the expression of dspE; a small percentage of Ech3937 cells (5.55%) was able to express dspE after 12 h of culture in this medium. In all, 68.95% of Ech3937 cells expressed pelD after 12 h of culture in MM supplemented with polygalacturonic acid (PGA). However, 96.34% of Echl31 cells (an hrpL deletion mutant of Ech3937) expressed pelD after 12 h of culture in MM supplemented with PGA. In potato tubers, 6.32% of the bacterial cells expressed dspE 2 h after inoculation, whereas only 0.25% of the cells expressed pelD. However, after 24 h, the percentage of cells expressing pelD (68.48%) was approximately 3.5 times that of cells expressing dspE (19.39%). In contrast to potato tubers, similar proportion of Ech3937 cells expressing dspE (39.34%) and pelD (40.30%) were observed in Chinese cabbage 24 h after inoculation. From promoter activity and real-time quantitative results, the expression of pelD in Ech3937 was demonstrated to be downregulated by HrpL in MM supplemented with PGA.  相似文献   

4.
5.
6.
Pectobacterium species are enterobacterial plant-pathogens that cause soft rot disease in diverse plant species. Unlike hemi-biotrophic plant pathogenic bacteria, the type III secretion system (T3SS) of Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) appears to secrete only one effector protein, DspE. Previously, we found that the T3SS regulator HrpL and the effector DspE are required for P. carotovorum pathogenesis on leaves. Here, we identified genes up-regulated by HrpL, visualized expression of dspE in leaves, and established that DspE causes host cell death. DspE required its full length and WxxxE-like motifs, which are characteristic of the AvrE-family effectors, for host cell death. We also examined expression in plant leaves and showed that hrpL is required for the expression of dspE and hrpN, and that the loss of a functional T3SS had unexpected effects on expression of other genes during leaf infection. These data support a model where P. carotovorum uses the T3SS early in leaf infection to initiate pathogenesis through elicitation of DspE-mediated host cell death.  相似文献   

7.
Erwinia amylovora causes a devastating disease called fire blight in rosaceous plants. The type III secretion system (T3SS) is one of the important virulence factors utilized by E. amylovora in order to successfully infect its hosts. By using a green fluorescent protein (GFP) reporter construct combined with a high-throughput flow cytometry assay, a library of phenolic compounds and their derivatives was studied for their ability to alter the expression of the T3SS. Based on the effectiveness of the compounds on the expression of the T3SS pilus, the T3SS inhibitors 4-methoxy-cinnamic acid (TMCA) and benzoic acid (BA) and one T3SS inducer, trans-2-(4-hydroxyphenyl)-ethenylsulfonate (EHPES), were chosen for further study. Both the T3SS inhibitors (TMCA and BA) and the T3SS inducer (EHPES) were found to alter the expression of T3SS through the HrpS-HrpL pathway. Additionally, TMCA altered T3SS expression through the rsmBEa-RsmAEa system. Finally, we found that TMCA and BA weakened the hypersensitive response (HR) in tobacco by suppressing the T3SS of E. amylovora. In our study, we identified phenolic compounds that specifically targeted the T3SS. The T3SS inhibitor may offer an alternative approach to antimicrobial therapy by targeting virulence factors of bacterial pathogens.  相似文献   

8.
9.
Bacteria use signal transduction systems to sense and respond to their external environment. The two‐component system CpxA/CpxR senses misfolded envelope protein stress and responds by up‐regulating envelope protein factors and down‐regulating virulence factors in several animal pathogens. Dickeya dadantii is a phytopathogen equipped with a type III secretion system (T3SS) for manipulating the host immune response. We found that deletion of cpxR enhanced the expression of the T3SS marker gene hrpA in a designated T3SS‐inducing minimal medium (MM). In the ∆cpxR mutant, multiple T3SS and c‐di‐GMP regulators were also up‐regulated. Subsequent analysis revealed that deletion of the phosphodiesterase gene egcpB in ∆cpxR abolished the enhanced T3SS expression. This suggested that CpxR suppresses EGcpB levels, causing low T3SS expression in MM. Furthermore, we found that the ∆cpxR mutant displayed low c‐di‐GMP phenotypes in biofilm formation and swimming. Increased production of cellular c‐di‐GMP by in trans expression of the diguanylate cyclase gene gcpA was negated in the ∆cpxR mutant. Here, we propose that CpxA/CpxR regulates T3SS expression by manipulating the c‐di‐GMP network, in turn modifying the multiple physiological activities involved in the response to environmental stresses in D. dadantii.  相似文献   

10.
11.
12.
13.
14.
15.
16.

Background

Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.

Methodology/Principal Findings

The intra-melanosomal domain of human tyrosinase (residues 19–469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.

Conclusions/Significance

The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure – function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.  相似文献   

17.

Background

Anaplasma marginale, an obligate intracellular alphaproteobacterium in the order Rickettsiales, is a tick-borne pathogen and the leading cause of anaplasmosis in cattle worldwide. Complete genome sequencing of A. marginale revealed that it has a type IV secretion system (T4SS). The T4SS is one of seven known types of secretion systems utilized by bacteria, with the type III and IV secretion systems particularly prevalent among pathogenic Gram-negative bacteria. The T4SS is predicted to play an important role in the invasion and pathogenesis of A. marginale by translocating effector proteins across its membrane into eukaryotic target cells. However, T4SS effector proteins have not been identified and tested in the laboratory until now.

Results

By combining computational methods with phylogenetic analysis and sequence identity searches, we identified a subset of potential T4SS effectors in A. marginale strain St. Maries and chose six for laboratory testing. Four (AM185, AM470, AM705 [AnkA], and AM1141) of these six proteins were translocated in a T4SS-dependent manner using Legionella pneumophila as a reporter system.

Conclusions

The algorithm employed to find T4SS effector proteins in A. marginale identified four such proteins that were verified by laboratory testing. L. pneumophila was shown to work as a model system for A. marginale and thus can be used as a screening tool for A. marginale effector proteins. The first T4SS effector proteins for A. marginale have been identified in this work.  相似文献   

18.
19.
Bacterial pathogen Dickeya zeae strain EC1 produces antibiotics‐like phytotoxins called zeamines, which are major virulence determinants encoded by the zms gene cluster. In this study, we identified a zeamine‐deficient mutant with a Tn5 insertion in a gene designated as vfmI encoding a two‐component system (TCS) sensor histidine kinase (HK), which is accompanied by vfmH encoding a response regulator (RR) at the same genetic locus. Domain analysis shows this TCS is analogous to the VfmIH of D. dadantii, with typical characteristics of sensor HK and RR, respectively, and sharing the same operon. Deletion of either vfmI or vfmH resulted in decreased production of zeamines and cell wall degrading enzymes (CWDEs), and alleviated virulence on rice seeds and potato tubers. In D. dadantii 3937, VfmH was shown to bind to the promoters of vfmA and vfmE, while in D. zeae EC1, VfmH could bind to the promoters of vfmA, vfmE and vfmF. RNA‐seq analysis of strain EC1 and its vfmH mutant also showed that the TCS positively regulated a range of virulence genes, including zms, T1SS, T2SS, T3SS, T6SS, flagellar and CWDE genes.  相似文献   

20.

Background

Bartonella species cospeciate with mammals and live within erythrocytes. Even in these specific niches, it has been recently suggested by bioinformatic analysis of full genome sequences that Lateral Gene Transfer (LGT) may occur but this has never been demonstrated biologically. Here we describe the sequence of the B. rattaustraliani (AUST/NH4T) circular plasmid (pNH4) that encodes the tra cluster of the Type IV secretion system (T4SS) and we eventually provide evidence that Bartonella species may conjugate and exchange this plasmid inside amoeba.

Principal Findings

The T4SS of pNH4 is critical for intracellular viability of bacterial pathogens, exhibits bioinformatic evidence of LGT among bacteria living in phagocytic protists. For instance, 3 out of 4 T4SS encoding genes from pNH4 appear to be closely related to Rhizobiales, suggesting that gene exchange occurs between intracellular bacteria from mammals (bartonellae) and plants (Rhizobiales). We show that B. rattaustraliani and Rhizobium radiobacter both survived within the amoeba Acanthamoeba polyphaga and can conjugate together. Our findings further support the hypothesis that tra genes might also move into and out of bacterial communities by conjugation, which might be the primary means of genomic evolution for intracellular adaptation by cross-talk of interchangeable genes between Bartonella species and plant pathogens.

Conclusions

Based on this, we speculate that amoeba favor the transfer of genes as phagocytic protists, which allows for intraphagocytic survival and, as a consequence, promotes the creation of potential pathogenic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号