首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gambhir M  Michael E 《PloS one》2008,3(8):e2874

Background

The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries—such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)—have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease.

Methodology/Principal Findings

We investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination.

Conclusions/Significance

The variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species-infection specificities, and the existence of hysteresis loop phenomenon, suggests that eradication of filariasis may require taking a more flexible and locally relevant approach to designing elimination programmes compared to the current command and control approach advocated by the global programme.  相似文献   

2.
Malaria eradication involves eliminating malaria from every country where transmission occurs. Current theory suggests that the post-elimination challenges of remaining malaria-free by stopping transmission from imported malaria will have onerous operational and financial requirements. Although resurgent malaria has occurred in a majority of countries that tried but failed to eliminate malaria, a review of resurgence in countries that successfully eliminated finds only four such failures out of 50 successful programmes. Data documenting malaria importation and onwards transmission in these countries suggests malaria transmission potential has declined by more than 50-fold (i.e. more than 98%) since before elimination. These outcomes suggest that elimination is a surprisingly stable state. Elimination''s ‘stickiness’ must be explained either by eliminating countries starting off qualitatively different from non-eliminating countries or becoming different once elimination was achieved. Countries that successfully eliminated were wealthier and had lower baseline endemicity than those that were unsuccessful, but our analysis shows that those same variables were at best incomplete predictors of the patterns of resurgence. Stability is reinforced by the loss of immunity to disease and by the health system''s increasing capacity to control malaria transmission after elimination through routine treatment of cases with antimalarial drugs supplemented by malaria outbreak control. Human travel patterns reinforce these patterns; as malaria recedes, fewer people carry malaria from remote endemic areas to remote areas where transmission potential remains high. Establishment of an international resource with backup capacity to control large outbreaks can make elimination stickier, increase the incentives for countries to eliminate, and ensure steady progress towards global eradication. Although available evidence supports malaria elimination''s stickiness at moderate-to-low transmission in areas with well-developed health systems, it is not yet clear if such patterns will hold in all areas. The sticky endpoint changes the projected costs of maintaining elimination and makes it substantially more attractive for countries acting alone, and it makes spatially progressive elimination a sensible strategy for a malaria eradication endgame.  相似文献   

3.

Background

There is a danger that mass drug administration campaigns may fail to maintain adequate treatment coverage to achieve lymphatic filariasis elimination. Hence, additional measures to suppress transmission might be needed to ensure the success of the Global Program for the Elimination of Lymphatic Filariasis.

Discussion

Vector control successfully eliminated lymphatic filariasis when implemented alone or with mass drug administration. Challenges to lymphatic filariasis elimination include uncertainty of the exact level and duration of microfilarial suppression required for elimination, the mobility of infected individuals, consistent non-participation of some infected individuals with mass drug administration, the possible development of anti-filarial drug resistance and treatment strategies in areas co-endemic with loasis. Integration of vector control with mass drug administration can address some of these challenges. The potential benefits of vector control would include: (1) the ability to suppress filariasis transmission without the need to identify all individual 'foci of infection'; (2) minimizing the risk of reestablishment of transmission from imported microfilaria positive individuals; and (3) decreasing the risk of dengue or malaria transmission where, respectively, Aedes or Anopheles are lymphatic filariasis vectors.

Summary

With adequate sustained treatment coverage, mass drug administration should meet the criteria for elimination of lymphatic filariasis. However, it may be difficult to sustain sufficiently high mass drug administration coverage to achieve lymphatic filariasis elimination in some areas, particularly, where Aedes species are the vectors. Since vector control was effective in controlling and even eliminating lymphatic filariasis transmission, integration of vector control with mass drug administration will ensure the sustainability of transmission suppression and thereby better ensure the success of national filariasis elimination programs. Although trials of some vector control interventions are needed, proven vector control strategies are ready for immediate integration with mass drug administration for many important vectors. Vector control is the only presently available additional lymphatic filariasis control measure with the potential for immediate implementation.  相似文献   

4.

Background

Large-scale intervention programmes to control or eliminate several infectious diseases are currently underway worldwide. However, a major unresolved question remains: what are reasonable stopping points for these programmes? Recent theoretical work has highlighted how the ecological complexity and heterogeneity inherent in the transmission dynamics of macroparasites can result in elimination thresholds that vary between local communities. Here, we examine the empirical evidence for this hypothesis and its implications for the global elimination of the major macroparasitic disease, lymphatic filariasis, by applying a novel Bayesian computer simulation procedure to fit a dynamic model of the transmission of this parasitic disease to field data from nine villages with different ecological and geographical characteristics. Baseline lymphatic filariasis microfilarial age-prevalence data from three geographically distinct endemic regions, across which the major vector populations implicated in parasite transmission also differed, were used to fit and calibrate the relevant vector-specific filariasis transmission models. Ensembles of parasite elimination thresholds, generated using the Bayesian fitting procedure, were then examined in order to evaluate site-specific heterogeneity in the values of these thresholds and investigate the ecological factors that may underlie such variability

Results

We show that parameters of density-dependent functions relating to immunity, parasite establishment, as well as parasite aggregation, varied significantly between the nine different settings, contributing to locally varying filarial elimination thresholds. Parasite elimination thresholds predicted for the settings in which the mosquito vector is anopheline were, however, found to be higher than those in which the mosquito is culicine, substantiating our previous theoretical findings. The results also indicate that the probability that the parasite will be eliminated following six rounds of Mass Drug Administration with diethylcarbamazine and albendazole decreases markedly but non-linearly as the annual biting rate and parasite reproduction number increases.

Conclusions

This paper shows that specific ecological conditions in a community can lead to significant local differences in population dynamics and, consequently, elimination threshold estimates for lymphatic filariasis. These findings, and the difficulty of measuring the key local parameters (infection aggregation and acquired immunity) governing differences in transmission thresholds between communities, mean that it is necessary for us to rethink the utility of the current anticipatory approaches for achieving the elimination of filariasis both locally and globally.
  相似文献   

5.
Chagas disease (South American trypanosomiasis) is a chronic but often fatal disease endemic throughout much of Latin America. Serological surveys suggest around 24 million people seropositive for the causative agent, Trypanosoma cruzi (Fig. 1), with over 65 million living in the endemic areas and at risk to infection. In Brazil, over 25 million people are considered at risk, and control of the disease constitutes one of Brazil's public health priorities. Treatment or vaccination against T. cruzi is impossible at the public health level because suitable drugs or vaccines are not available. But it is well recognized that transmission can be interrupted by eliminating the domestic vectors - blood-sucking reduviid bugs of the subfamily Triatominae. In Brazil, eradication of Triatoma infestans - the major domestic vector of T. cruzi - is now seen as a feasible target by the Ministry of Health. However, although other domestic vectors can also be controlled, they will retain their sylvatic ecotopes from which they can reinvade houses. In this article, Joao Carlos Pinto Dias explains the current Brazilian policy, high-lighting the successful elimination of T. infestans from much of the southern part of the country.  相似文献   

6.
The SIR (susceptible-infectious-resistant) and SIS (susceptible-infectious-susceptible) frameworks for infectious disease have been extensively studied and successfully applied. They implicitly assume the upper and lower limits of the range of possibilities for host immune response. However, the majority of infections do not fall into either of these extreme categories. We combine two general avenues that straddle this range: temporary immune protection (immunity wanes over time since infection), and partial immune protection (immunity is not fully protective but reduces the risk of reinfection). We present a systematic analysis of the dynamics and equilibrium properties of these models in comparison to SIR and SIS, and analyse the outcome of vaccination programmes. We describe how the waning of immunity shortens inter-epidemic periods, and poses major difficulties to disease eradication. We identify a "reinfection threshold" in transmission when partial immunity is included. Below the reinfection threshold primary infection dominates, levels of infection are low, and vaccination is highly effective (approximately an SIR model). Above the reinfection threshold reinfection dominates, levels of infection are high, and vaccination fails to protect (approximately an SIS situation). This association between high prevalence of infection and vaccine failure emphasizes the problems of controlling recurrent infections in high-burden regions. However, vaccines that induce a better protection than natural infection have the potential to increase the reinfection threshold, and therefore constitute interventions with a surprisingly high capacity to reduce infection where reduction is most needed.  相似文献   

7.
Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.  相似文献   

8.
Despite the effectiveness of vaccines in dramatically decreasing the number of new infectious cases and severity of illnesses, imperfect vaccines may not completely prevent infection. This is because the immunity afforded by these vaccines is not complete and may wane with time, leading to resurgence and epidemic outbreaks notwithstanding high levels of primary vaccination. To prevent an endemic spread of disease, and achieve eradication, several countries have introduced booster vaccination programs. The question of whether this strategy could eventually provide the conditions for global eradication is addressed here by developing a seasonally-forced mathematical model. The analysis of the model provides the threshold condition for disease control in terms of four major parameters: coverage of the primary vaccine; efficacy of the vaccine; waning rate; and the rate of booster administration. The results show that if the vaccine provides only temporary immunity, then the infection typically cannot be eradicated by a single vaccination episode. Furthermore, having a booster program does not necessarily guarantee the control of a disease, though the level of epidemicity may be reduced. In addition, these findings strongly suggest that the high coverage of primary vaccination remains crucial to the success of a booster strategy. Simulations using estimated parameters for measles illustrate model predictions. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). One of the authors (P.R.) acknowledges the support of the Ellison Medical Foundation.  相似文献   

9.
Population effects of malaria vaccination programs will depend on the stage specificity of the vaccine, its duration of effectiveness, whether it is responsive to natural boosting, the proportion vaccinated, and the preexisting endemic conditions. This paper develops models of infection-blocking (sporozoite), disease-modifying (merozoite), and transmission-blocking (gametic) vaccines. It explores numerically their different effects on prevalence of infection and disease when utilized in different types of immunization programs at various levels of coverage. Simulations show that possible qualitative consequences of malaria vaccination programs include decreased prevalence of infection and disease and decreased prevalence of infection without a corresponding decrease in prevalence of disease. Epidemics, either one-time or cyclical, could occur. These effects could be accompanied by changes in the age distribution of disease. Finally, vaccination could contribute to elimination of transmission. The duration of effectiveness of the malaria vaccine relative to the duration of natural immunity could have important consequences for the unvaccinated. The problem of predicting a threshold for elimination of transmission is discussed.  相似文献   

10.

Malaria remains a major health burden especially for the developing countries. Despite concerted efforts at using the current control tools, such as bed nets, anti malarial drugs and vector control measures, the disease is accountable for close to a million deaths annually. Vaccines have been proposed as a necessary addition to the armamentarium that could work towards elimination and eventual eradication of malaria in view of their historical significance in combating infectious diseases. However, because malaria vaccines would work differently depending on the targeted parasite stage, this review addresses the potential impact various malaria vaccine types could have on transmission. Further, because of the wide variation in the epidemiology of malaria across the endemic regions, this paper proposes that the ideal approach to malaria control ought to be tailor-made depending on the specific context. Finally, it suggests that although it is highly desirable to anticipate and aim for malaria elimination and eventual eradication, many affected regions should prioritize reduction of mortality and morbidity before aspiring for elimination.

  相似文献   

11.

Background

Infectious diseases elimination and eradication have become important areas of focus for global health and countries. Due to the substantial up-front investments required to eliminate and eradicate, and the overall shortage of resources for health, economic analysis can inform decision making on whether elimination/eradication makes economic sense and on the costs and benefits of alternative strategies. In order to draw lessons for current and future initiatives, we review the economic literature that has addressed questions related to the elimination and eradication of infectious diseases focusing on: why, how and for whom?

Methods

A systematic review was performed by searching economic literature (cost-benefit, cost-effectiveness and economic impact analyses) on elimination/eradication of infectious diseases published from 1980 to 2013 from three large bibliographic databases: one general (SCOPUS), one bio-medical (MEDLINE/PUBMED) and one economic (IDEAS/REPEC).

Results

A total of 690 non-duplicate papers were identified from which only 43 met the inclusion criteria. In addition, only one paper focusing on equity issues, the “for whom?” question, was found. The literature relating to “why?” is the largest, much of it focusing on how much it would cost. A more limited literature estimates the benefits in terms of impact on economic growth with mixed results. The question of how to eradicate or eliminate was informed by an economic literature highlighting that there will be opportunities for individuals and countries to free-ride and that forms of incentives and/or disincentives will be needed. This requires government involvement at country level and global coordination. While there is little doubt that eliminating infectious diseases will eventually improve equity, it will only happen if active steps to promote equity are followed on the path to elimination and eradication.

Conclusion

The largest part of the literature has focused on costs and economic benefits of elimination/eradication. To a lesser extent, challenges associated with achieving elimination/eradication and ensuring equity have also been explored. Although elimination and eradication are, for some diseases, good investments compared with control, countries’ incentives to eliminate do not always align with the global good and the most efficient elimination strategies may not prioritize the poorest populations. For any infectious disease, policy-makers will need to consider realigning contrasting incentives between the individual countries and the global community and to assure that the process towards elimination/eradication considers equity.  相似文献   

12.

Background

Lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths, and trachoma are the five most prevalent neglected tropical diseases in the world, and each is frequently treated with mass drug administrations. We performed a survey of neglected tropical diseases experts to elicit their opinions on the role of mass drug administrations for the elimination of these infections.

Methodology/Principal Findings

We sent an online survey to corresponding authors who had published an article about a neglected tropical disease from 2007 to 2011. Of 825 unique authors who were invited to complete the survey, 365 (44.2%) responded, including 234 (28.4%) who answered questions regarding one of the five most prevalent neglected tropical diseases. Respondents had varying opinions about the goals of programmatic activities for their chosen neglected tropical disease, with elimination or eradication identified as the most important goal by 87% of lymphatic filariasis respondents, 66% of onchocerciasis respondents, 55% of trachoma respondents, 24% of schistosomiasis respondents, and 21% of soil-transmitted helminth respondents. Mass drug administrations, other non-medication health measures, and education were generally thought to be more important for elimination than vector control, development of a new tool, or the presence of a secular trend. Drug resistance was thought to be a major limitation of mass drug administrations for all five neglected tropical diseases. Over half of respondents for lymphatic filariasis and trachoma thought that repeated mass drug administrations could eliminate infection within ten years of the initiation of mass treatments.

Conclusions/Significance

Respondents for lymphatic filariasis, onchocerciasis, and trachoma were more enthusiastic about the prospects of elimination and eradication than were respondents for schistosomiasis or soil-transmitted helminths. Mass drug administrations were generally believed to be among the most important factors for the success of elimination efforts for each of the five neglected tropical diseases, highlighting the opportunity for integrating drug distributions.  相似文献   

13.
Okosun KO  Ouifki R  Marcus N 《Bio Systems》2011,106(2-3):136-145
We derive and analyse a deterministic model for the transmission of malaria disease with mass action form of infection. Firstly, we calculate the basic reproduction number, R(0), and investigate the existence and stability of equilibria. The system is found to exhibit backward bifurcation. The implication of this occurrence is that the classical epidemiological requirement for effective eradication of malaria, R(0)<1, is no longer sufficient, even though necessary. Secondly, by using optimal control theory we derive the conditions under which it is optimal to eradicate the disease and examine the impact of a possible combined vaccination and treatment strategy on the disease transmission. When eradication is impossible, we derive the necessary conditions for optimal control of the disease using Pontryagin's Maximum Principle. The results obtained from the numerical simulations of the model show that a possible vaccination combined with effective treatment regime would reduce the spread of the disease appreciably.  相似文献   

14.
Genital Herpes, which is caused by Herpes Simplex Virus-1 or -2 (HSV-1, -2, predominantly HSV-2) is a sexually transmitted infection (STI) that causes a chronic latent infection with outbreak episodes linked to transmission. Antiviral therapies are effective in reducing viral shedding during these episodes, but are ineffective as a whole since many outbreaks are asymptomatic or have mild symptoms. Thus, the development of a vaccine for genital herpes is needed to control this disease. The question of how to implement such a vaccine program is an important one, and may be similar to the vaccination program for Human Papilloma Virus (HPV) for young females. We have developed a mathematical model to describe the epidemiology of vaccination targeting young females against HSV-2. The model population is delineated with respect to age group, sexual activity and infection status including oral infection of HSV-1, which may affect vaccine efficacy. A threshold parameter , which determines the level of vaccine uptake needed to eradicate HSV-2, is found. Computer simulation shows that an adolescent-only vaccination program may be effective in eliminating HSV-2 disease, however, the success of extinction greatly depends on the level of vaccine uptake, the vaccine efficacy, the age of sexual maturity and safe sex practices. However, the time course of eradication would take many years. We also investigate the prevalence of infection in the total population and in women between 16–30 years of age before and after vaccination has been introduced, and show that the adolescent-only vaccination program can be effective in reducing disease prevalence in these populations depending on the level of vaccine uptake and vaccine efficacy. This will also result in a decrease of maternal-fetal transmission of HSV-2 infection. Another important, if commonsense, conclusion is that vaccination of some females reduces infection in men, which then reduces infection in women.  相似文献   

15.
Antimalarial drugs will be essential tools at all stages of malaria elimination along the path towards eradication, including the early control or "attack" phase to drive down transmission and the later stages of maintaining interruption of transmission, preventing reintroduction of malaria, and eliminating the last residual foci of infection. Drugs will continue to be used to treat acute malaria illness and prevent complications in vulnerable groups, but better drugs are needed for elimination-specific indications such as mass treatment, curing asymptomatic infections, curing relapsing liver stages, and preventing transmission. The ideal malaria eradication drug is a coformulated drug combination suitable for mass administration that can be administered in a single encounter at infrequent intervals and that results in radical cure of all life cycle stages of all five malaria species infecting humans. Short of this optimal goal, highly desirable drugs might have limitations such as targeting only one or two parasite species, the priorities being Plasmodium falciparum and Plasmodium vivax. The malaria research agenda for eradication should include research aimed at developing such drugs and research to develop situation-specific strategies for using both current and future drugs to interrupt malaria transmission.  相似文献   

16.
BackgroundGuinea worm–Dracunculus medinensis–was historically one of the major parasites of humans and has been known since antiquity. Now, Guinea worm is on the brink of eradication, as efforts to interrupt transmission have reduced the annual burden of disease from millions of infections per year in the 1980s to only 54 human cases reported globally in 2019. Despite the enormous success of eradication efforts to date, one complication has arisen. Over the last few years, hundreds of dogs have been found infected with this previously apparently anthroponotic parasite, almost all in Chad. Moreover, the relative numbers of infections in humans and dogs suggests that dogs are currently the principal reservoir on infection and key to maintaining transmission in that country.Principal findingsIn an effort to shed light on this peculiar epidemiology of Guinea worm in Chad, we have sequenced and compared the genomes of worms from dog, human and other animal infections. Confirming previous work with other molecular markers, we show that all of these worms are D. medinensis, and that the same population of worms are causing both infections, can confirm the suspected transmission between host species and detect signs of a population bottleneck due to the eradication efforts. The diversity of worms in Chad appears to exclude the possibility that there were no, or very few, worms present in the country during a 10-year absence of reported cases.ConclusionsThis work reinforces the importance of adequate surveillance of both human and dog populations in the Guinea worm eradication campaign and suggests that control programs aiming to interrupt disease transmission should stay aware of the possible emergence of unusual epidemiology as pathogens approach elimination.  相似文献   

17.
Hyperparasites in the form of cytoplasmic RNA elements have been proposed as a biological control agent for Dutch elm disease. We characterized the range of outcomes likely to follow the introduction of such an agent by modelling the resultant population dynamics as an ecological interaction between the wild, ''target'', fungus and the hyperparasitized ''control'' fungus. We used data from the 1970s epidemic of Dutch elm disease in the UK to parameterize the population dynamics of the target fungus, and considered the success of control across a wide range of possibilities for the lethality and transmissibility of the modified control fungus. We decomposed hyperparasite transmissibility into horizontal transmissibility (the ability to colonize previously unparasitized target fungal hosts) and vertical transmissibility (the ability of control fungus to establish new colonies). There is an invasion threshold for both horizontal and vertical transmissibility. As vertical transmission is further increased, there is another threshold at which the target fungus is eradicated because of competitive exclusion by the control fungus. In contrast, eradication by raising horizontal transmission may never succeed because the target fungus needs to be present to support new cases through this route. Between these two thresholds for invasion and exclusion, control and target fungus may coexist. Using a stochastic, spatially extended model, we showed that predictions of success based on high competitive ability of the control fungus (i.e. high vertical transmission) are likely to be more robust than those based on the high degree to which the control fungus can cause target fungus to be hyperparasitized (i.e. high horizontal transmission).  相似文献   

18.
《Small Ruminant Research》2009,87(1-3):90-93
Footrot is a major welfare problem and cause of economic losses in most sheep-keeping countries. The main reasons why this is the case are reviewed, particularly the effects of weather, environment and husbandry methods on the spread of the disease. The main methods for control and elimination (eradication) are briefly described. Attention is drawn to the fact that control is particularly difficult in temperate countries without predictable non-transmission periods.  相似文献   

19.
Arthropod-borne apicomplexan pathogens that cause asymptomatic persistent infections present a significant challenge due to their life-long transmission potential. Although anti-microbials have been used to ameliorate acute disease in animals and humans, chemotherapeutic efficacy for apicomplexan pathogen elimination from a persistently infected host and removal of transmission risk is largely unconfirmed. The recent re-emergence of the apicomplexan Theileria equi in U.S. horses prompted testing whether imidocarb dipropionate was able to eliminate T. equi from naturally infected horses and remove transmission risk. Following imidocarb treatment, levels of T. equi declined from a mean of 10(4.9) organisms/ml of blood to undetectable by nested PCR in 24 of 25 naturally infected horses. Further, blood transfer from treated horses that became nested PCR negative failed to transmit to na?ve splenectomized horses. Although these results were consistent with elimination of infection in 24 of 25 horses, T. equi-specific antibodies persisted in the majority of imidocarb treated horses. Imidocarb treatment was unsuccessful in one horse which remained infected as measured by nested PCR and retained the ability to infect a na?ve recipient via intravenous blood transfer. However, a second round of treatment eliminated T. equi infection. These results support the utility of imidocarb chemotherapy for assistance in the control and eradication of this tick-borne pathogen. Successful imidocarb dipropionate treatment of persistently infected horses provides a tool to aid the global equine industry by removing transmission risk associated with infection and facilitating international movement of equids between endemic and non-endemic regions.  相似文献   

20.
BACKGROUND: The Onchocerciasis Control Program (OCP) in West Africa has been closed down at the end of 2002. All subsequent control will be transferred to the participating countries and will almost entirely be based on periodic mass treatment with ivermectin. This makes the question whether elimination of infection or eradication of onchocerciasis can be achieved using this strategy of critical importance. This study was undertaken to explore this issue. METHODS: An empirical approach was adopted in which a comprehensive analysis was undertaken of available data on the impact of more than a decade of ivermectin treatment on onchocerciasis infection and transmission. Relevant entomological and epidemiological data from 14 river basins in the OCP and one basin in Cameroon were reviewed. Areas were distinguished by frequency of treatment (6-monthly or annually), endemicity level and additional control measures such as vector control. Assessment of results were in terms of epidemiological and entomological parameters, and as a measure of inputs, therapeutic and geographical coverage rates were used. RESULTS: In all of the river basins studied, ivermectin treatment sharply reduced prevalence and intensity of infection. Significant transmission, however, is still ongoing in some basins after 10-12 years of ivermectin treatment. In other basins, transmission may have been interrupted, but this needs to be confirmed by in-depth evaluations. In one mesoendemic basin, where 20 rounds of four-monthly treatment reduced prevalence of infection to levels as low as 2-3%, there was significant recrudescence of infection within a few years after interruption of treatment. CONCLUSIONS: Ivermectin treatment has been very successful in eliminating onchocerciasis as a public health problem. However, the results presented in this paper make it almost certain that repeated ivermectin mass treatment will not lead to the elimination of transmission of onchocerciasis from West Africa. Data on 6-monthly treatments are not sufficient to draw definitive conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号