首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The possibility that a long-lasting neuronal activation regulates the expression of muscarinic cholinergic receptors was studied with three cultured neuronal cell lines. 2. Continuous depolarization of a subclone of the neuroblastoma-glioma NG108-15 hybrid cells with potassium chloride increased by 45-75% the number of cholinergic muscarinic receptors, monitored with 3H-QNB, whereas a short incubation with KCl for 10 min or 6 hr had no effect. 3. The calcium channel blocker verapamil increased the effect of KCl. 4. Two cell lines, named SC9 and WC5, that originate from the rat brain, also bind 3H-QNB. They were therefore used to test whether the effect of chronic depolarization is universal. Depolarized SC9 and WC5 cells, in the presence or absence of verapamil, did not show an increased 3H-QNB binding. 5. Muscarinic receptors of both SC9 and WC5 cells have a higher affinity to pirenzepine than the M-3 receptor subtype of the neuroblastoma-glioma cells, suggesting therefore that the two rat brain cell lines possess M-1 or M-2 receptors. 6. The physiological significance of this differential role of depolarization on the expression of different muscarinic receptors is discussed in the context of their postreceptor second messengers.  相似文献   

2.
Neurotensin (NT) is now reasonably well established as a neurotransmitter or neuromodulator candidate in the CNS. In the present study, we characterized the NT receptors in dispersed cells from the anterior lobe of rat pituitary and investigated the involvement of both cyclic AMP and calcium in the release of prolactin (PRL) induced by NT receptor stimulation. The [3H]NT binding to membranes from anterior pituitary dispersed cells was found saturable and stereospecific. Scatchard analysis of the data gave a straight line indicating a Bmax value of 121 +/- 11 fmol/mg protein and a KD value of 1.4 +/- 0.2 nM. The calculated IC50 values for [3H]NT binding were 5.8 nM for NT, 7.8 nM for L-Phe-NT, and 3,000 nM for the pharmacologically inactive form D-Phe-NT. NT, up to a concentration of 1 microM, did not affect the cyclic AMP generating system in homogenates of anterior pituitary from male or lactating female rats. The same pattern of results was obtained for cyclic AMP formation in intact cells. NT and its analogs stereospecifically enhanced the influx of calcium into dispersed cells from rat anterior pituitary. The effect was time- and dose-dependent. It appeared to be associated with neurotransmitter-operated calcium channels since: preincubation of the cells with tetrodotoxin did not affect the increase in calcium influx induced by NT; concentrations of verapamil that counteract the influx of calcium induced by potassium lacked the capacity to modify the influx of calcium induced by NT; and NT lost its capacity to release PRL in the absence of extracellular calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: Agmatine (decarboxylated arginine), an endogenous ligand for imidazoline receptors, has been identified in brain where it is synthesized from arginine by arginine decarboxylase. Here we report a mechanism for the transport of agmatine into rat brain synaptosomes. The uptake of agmatine was energy- and temperature-dependent and saturable with a K m of 18.83 ± 3.31 m M and a V max of 4.78 ± 0.67 nmol/mg of protein/min. Treatment with ouabain (Na+,K+-ATPase inhibitor) or removal of extracellular Na+ did not attenuate the uptake rate. Agmatine transport was not inhibited by amino acids, polyamines, or monoamines, indicating that the uptake is not mediated by any amino acid, polyamine, or monoamine carriers. When we examined the effects of some ion-channel agents on agmatine uptake, only Ca2+-channel blockers inhibited the uptake, whereas a reduction in extracellular Ca2+ increased it. In addition, some imidazoline drugs, such as idazoxan and phentolamine, were strong noncompetitive inhibitors of agmatine uptake. Thus, a selective, Na+-independent uptake system for agmatine exists in brain and may be important in regulating the extracellular concentration of agmatine.  相似文献   

4.
Abstract: In this study we demonstrate that 50 mRS K+ stimulates the conversion of L-[3H] arginine to L-[3H] citrulline and that this effect is blocked by 10 μ M AT-nitro- l -arginine, a nitric oxide synthase inhibitor, and Ca2+-free conditions. Amiloride (1 m M ) and low Na+ conditions were used to test the possible involvement of the Na+-Ca2+ exchanger. These treatments were without effect. The calcium channel blockers 10 mRS Mg2+, 100 μ M Cd2+, and 10 mRS Co2+ also blocked the K+ response, suggesting the involvement of voltage-dependent calcium channels (VDCCs). The specific VDCC involved seems to be the P type, as funnel-web spider toxin blocked the response whereas 200 μ M Ni2+, 10 μ M nifedipine, and 100 n M ω-conotoxin did not.  相似文献   

5.
S-Palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by ∼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.  相似文献   

6.
The ionic pore of the P2X receptor passes through the central axis of six transmembrane (TM) helices, two from each of three subunits. Val48 and Ile328 are at the outer end of TM1 and TM2, respectively. Homology models of the open and closed states of P2X2 indicate that pore opening is associated with a large lateral displacement of Ile328. In addition, molecular dynamics simulations suggest that lipids enter the interstices between the outer ends of the TM domains. The P2X2(I328C) receptor was activated by propyl-methanethiosulfonate (MTS) as effectively as by ATP, but cysteine substitutions elsewhere in TM2 had no such effect. Other lipophilic MTS compounds (methyl, ethyl, and tert-butylethyl) had a similar effect but not polar MTS. The properties of the conducting pathway opened by covalent attachment of propyl-MTS were the same as those opened by ATP, with respect to unitary conductance, rectification, and permeability of N-methyl-d-glucamine. The ATP-binding residue Lys69 was not required for the action of propyl-MTS, although propyl-MTS did not open P2X2(K308A/I328C) receptors. The propyl-MTS did not open P2X2 receptors in which the Val48 side chain was removed (P2X2(V48G/I328C)). The results suggest that an interaction between Val48 and Ile328 stabilizes the closed channel and that this is broken by covalent attachment of a larger lipophilic moiety at the I328C receptors. Lipid intercalation between the separating TM domains during channel opening would be facilitated in P2X2(I328C) receptors with attached propyl-MTS. The results are consistent with the channel opening mechanism proposed on the basis of closed and open crystal structures and permit the refinement of the position of the TMs within the bilayer.  相似文献   

7.
The effect of membrane depolarization on cyclic AMP synthesis was studied in glia-free, low-density, monolayer cultures of chick retinal photoreceptors and neurons. In photoreceptor-enriched cultures prepared from embryonic day 6 retinas and cultured for 6 days, elevated K+ concentrations increased the intracellular concentration of cyclic AMP and stimulated the conversion of [3H]adenine to [3H]cyclic AMP. The K(+)-evoked increase of cyclic AMP accumulation was blocked by omitting CaCl2 from the incubation medium, indicating a requirement for extracellular Ca2+. Stimulation of cyclic AMP accumulation was also inhibited by nifedipine, methoxyverapamil, Cd2+, Co2+, and Mg2+, and was enhanced by the dihydropyridine Ca2+ channel agonist Bay K 8644. The enhancement of K(+)-evoked cyclic AMP accumulation by Bay K 8644 was antagonized by nifedipine. Thus, Ca2+ influx through dihydropyridine-sensitive channel is required for depolarization-evoked stimulation of cyclic AMP accumulation in photoreceptor-enriched cultures.  相似文献   

8.
Abstract: The catecholamine secretory function of a preparation of isolated bovine adrenal chromaffin cells has been further characterized under conditions designed to elucidate the mechanism of calcium channel activation and the possible role of cytoskeletal elements in stimulus-secretion coupling. Three related sets of data were obtained: (1) Differences in kinetics, Ca dependence, strength, and additivity of the secretory response to acetylcholine (ACh) versus excess K; (2) the effects on secretion of the Ca channel-blocking agents, Ni, Mg, and verapamil; and (3) the Ca dependence of vinblastine action on ACh- and K-evoked secretion. The results suggest that a major portion of the Ca influx required for catecholamine release enters the cell via voltage-dependent Ca channels with some additional Ca influx via the ACh receptor channel. Comparison of the present secretion data with corresponding known electrophysiological properties of isolated chromaffin cells provides added evidence for a role of chromaffin cell action potentials in regulation of Ca influx and the secretory response. Elevated Ca concentrations enhanced K-evoked secretion to levels comparable to that of ACh but did not induce a vinblastine block of K-evoked release. This provides further evidence against a role of microtubules in the common exocytosis event per se. However, a role of cytoskeletal elements in directing the movement of secretory granules, or an action of vinblastine at cholinergic receptors, remain distinct possibilities.  相似文献   

9.
Increased Ca2+ influx serves as a signal that initiates multiple biochemical and physiological events in neurons following depolarization. The most widely studied of these phenomena is the release of neurotransmitters. In sympathetic neurons, depolarization also increases the rate of synthesis of the transmitter norepinephrine (NE), via an activation of the enzyme tyrosine hydroxylase (TH), and this effect also seems to involve Ca2+ entry. We have examined whether the mechanism of Ca2+ entry relevant to TH activation is via voltage-sensitive Ca2+ channels and, if so, whether the type of Ca2+ channel involved is the same as that involved in the stimulation of NE release. We have investigated the isolated rat iris, allowing us to examine transmitter biosynthesis and release in sympathetic nerve terminals in the absence of sympathetic cell bodies and dendrites. Potassium depolarization produced a three- to fivefold increase in TH activity and an approximately 100-fold increase in NE release. Both effects were dependent on Ca2+ being present in the extracellular medium, and both were inhibited by omega-conotoxin (1 microM), which inhibits N-type voltage-sensitive Ca2+ channels. In contrast, the dihydropyridine nimodipine (1-3 microM), which blocks L-type Ca2+ channels, had no effect on either measure. These data support the hypothesis that increases in NE biosynthesis and release in sympathetic nerve terminals during periods of depolarization are both initiated by an influx of Ca2+ through voltage-sensitive Ca2+ channels and that a similar type of Ca2+ channel is involved in both processes.  相似文献   

10.
The G-protein-gated inwardly rectifying K +(GIRK) family of ion channels form functional Gβγ-sensitive channels as heteromultimers of GIRK1 and either the GIRK2 or GIRK4 subunits. However, the homologous mouse brain GIRK3 clone failed to express in the earliest reported functional experiments in Xenopus oocytes. We recloned the GIRK3 subunit from mouse brain and found that the new clone differed significantly from that originally reported. The functional aspects of GIRK3 were reinvestigated by expression in CHO cells. The single channel properties of GIRK1/GIRK3 were characterized and compared to those of the GIRK1/GIRK2 and GIRK1/GIRK4 channels. All three GIRK1/GIRKx combinations produced channels with nearly indistinguishable conductances and kinetics. The response of GIRK1/GIRK3 to Gβγ in the 1–47 nm range was examined and found to be indistinguishable from that of GIRK1/GIRK4 channels. We conclude that GIRK1, with either GIRK2, 3, or 4, gives rise to heteromultimeric channels with virtually identical conductances, kinetics, and Gβγ sensitivities. Received: 13 January 1999/Revised: 2 March 1999  相似文献   

11.
Abstract: This study shows that activation of M1 muscarinic receptors, when coexpressed in Chinese hamster ovary (CHO)-K1 cells with neuronal nitric oxide (NO) synthase (nNOS), produces early and late phases of elevation of both intracellular Ca2+ concentration and nNOS activity. We examined the relationship between receptor-mediated increases in intracellular Ca2+ concentration and activation of nNOS over both short and long intervals using guanosine 3',5'-cyclic monophosphate (cGMP) formation as a measure of nNOS activity. The rapid phase of nNOS activation was dependent on release of Ca2+ from intracellular stores in both the CHO M1/nNOS transfected cells and in neuroblastoma (N1E-115) cells, in which muscarinic receptors and nNOS are endogenously expressed. Two single point mutations in the M1 muscarinic receptor that have previously been shown to uncouple differentially the receptor from phosphoinositide hydrolysis produced parallel attenuation of the rapid phase of nNOS activation. Characterization of the prolonged phase of nNOS activation was done using the conversion of l -[3H]arginine to l -[3H]citrulline as well as cGMP formation following stimulation of M1 muscarinic receptors for 60 min. Both responses were dependent on influx of extracellular Ca2+ and were accompanied by prolonged formation of NO at functionally effective levels as late as 60 min following receptor activation. Therefore, this study demonstrates for the first time the existence of two mechanistically distinct phases of nNOS activation that are dependent on different sources of Ca2+.  相似文献   

12.
Fluctuation of surface charge on pore walls provides a realistic, additional mechanism for generating fluctuation of ionic current and ionic selectivity in narrow pores.  相似文献   

13.
Simple neural network models of the Xenopus embryo swimming CPG, based on the one originally developed by Roberts and Tunstall (1990), were used to investigate the role of the voltage-dependent N-methyl-D-aspartate (NMDA) receptor channels, in conjunction with faster non-NMDA components of synaptic excitation, in rhythm generation. The voltage-dependent NMDA current "follows" the membrane potential, leading to a postinhibitory rebound that is more efficient than one without voltage dependency and allows neurons to fire more than one action potential per cycle. Furthermore, the model demonstrated limited rhythmic activity in the absence of synaptic inhibition, supporting the hypothesis that the NMDA channels provide a basic mechanism for rhythmicity. However, the rhythmic properties induced by the NMDA current were observed only when there was moderate activation of the non-NMDA synaptic channels, suggesting a modulatory role for this component. The simulations also show that the voltage dependency of the NMDA conductance, as well as the fast non-NMDA current, stabilizes the alternation pattern versus synchrony. To verify that these effects and their implications on the mechanism of swimming and transition to other types of activity take place in the real preparation, constraints on parameter values have to be specified. A method to estimate synaptic parameters was tested with generated data. It is shown that a global analysis, based on multiple iterations of the optimization process (Foster et al., 1993), gives a better understanding of the parameter subspace describing network activity than a standard fit with a sensitivity analysis for an individual solution.  相似文献   

14.
15.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

16.
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibit overlapping activities in the regulation of hematopoietic cells. In humans, the common β (βc) receptor is shared by the three cytokines and functions together with cytokine-specific α subunits in signaling. A widely accepted hypothesis is that receptor activation requires heterodisulfide formation between the domain 1 D-E loop disulfide in human βc (hβc) and unidentified cysteine residues in the N-terminal domains of the α receptors. Since the development of this hypothesis, new data have been obtained showing that domain 1 of hβc is part of the cytokine binding epitope of this receptor and that an IL-3Rα isoform lacking the N-terminal Ig-like domain (the “SP2” isoform) is competent for signaling. We therefore investigated whether distortion of the domain 1-domain 4 ligand-binding epitope in hβc and the related mouse receptor, βIL-3, could account for the loss of receptor signaling when the domain 1 D-E loop disulfide is disrupted. Indeed, mutation of the disulfide in hβc led to both a complete loss of high affinity binding with the human IL-3Rα SP2 isoform and of downstream signaling. Mutation of the orthologous residues in the mouse IL-3-specific receptor, βIL-3, not only precluded direct binding of mouse IL-3 but also resulted in complete loss of high affinity binding and signaling with the mouse IL-3Rα SP2 isoform. Our data are most consistent with a role for the domain 1 D-E loop disulfide of hβc and βIL-3 in maintaining the precise positions of ligand-binding residues necessary for normal high affinity binding and signaling.  相似文献   

17.
Recent functional evidence suggests that intermediate conductance calcium-activated potassium channels (IK channels) occur in neurons in the small intestine and in mucosal epithelial cells in the colon. This study was undertaken to investigate whether IK channel immunoreactivity occurs at these and at other sites in the gastrointestinal tract of the rat. IK channel immunoreactivity was found in nerve cell bodies throughout the gastrointestinal tract, from the esophagus to the rectum. It was revealed in the initial segments of the axons, but not in axon terminals. The majority of immunoreactive neurons had Dogiel type II morphology and in the myenteric plexus of the ileum all immunoreactive neurons were of this shape. Intrinsic primary afferent neurons in the rat small intestine are Dogiel type II neurons that are immunoreactive for calretinin, and it was found that almost all the IK channel immunoreactive neurons were also calretinin immunoreactive. IK channel immunoreactivity also occurred in calretinin-immunoreactive, Dogiel type II neurons in the caecum. Epithelial cells of the mucosal lining were immunoreactive in the esophagus, stomach, small and large intestines. In the intestines, the immunoreactivity occurred in transporting enterocytes, but not in mucous cells. Immunoreactivity was at both the apical and basolateral surfaces. A small proportion of mucosal endocrine cells was immunoreactive in the duodenum, ileum and caecum, but not in the stomach, proximal colon, distal colon or rectum. There was immunoreactivity of vascular endothelial cells. It is concluded that IK channels are located on cell bodies and proximal parts of axons of intrinsic primary afferent neurons, where, from functional studies, they would be predicted to lower neuronal excitability when opened in response to calcium entry. In the mucosa of the small and large intestine, IK channels are probably involved in control of potassium exchange, and in the esophageal and gastric mucosa they are possibly involved in control of cell volume in response to osmotic challenge.  相似文献   

18.
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels control rhythmicity in neurons and cardiomyocytes. Cyclic AMP allosterically modulates HCN through the cAMP-dependent formation of a tetrameric gating ring spanning the intracellular region (IR) of HCN, to which cAMP binds. Although the apo versus holo conformational changes of the cAMP-binding domain (CBD) have been previously mapped, only limited information is currently available on the HCN IR dynamics, which have been hypothesized to play a critical role in the cAMP-dependent gating of HCN. Here, using molecular dynamics simulations validated and complemented by experimental NMR and CD data, we comparatively analyze HCN IR dynamics in the four states of the thermodynamic cycle arising from the coupling between cAMP binding and tetramerization equilibria. This extensive set of molecular dynamics trajectories captures the active-to-inactive transition that had remained elusive for other CBDs, and it provides unprecedented insight on the role of IR dynamics in HCN autoinhibition and its release by cAMP. Specifically, the IR tetramerization domain becomes more flexible in the monomeric states, removing steric clashes that the apo-CDB structure would otherwise impose. Furthermore, the simulations reveal that the active/inactive structural transition for the apo-monomeric CBD occurs through a manifold of pathways that are more divergent than previously anticipated. Upon cAMP binding, these pathways become disallowed, pre-confining the CBD conformational ensemble to a tetramer-compatible state. This conformational confinement primes the IR for tetramerization and thus provides a model of how cAMP controls HCN channel gating.  相似文献   

19.
We constructed chimeras between the rapidly activating Kv1.2 channel and the slowly activating Kv2.1 channel in order to study to what extent sequence differences within the S1–S4 region contribute to the difference in activation kinetics. The channels were expressed in Xenopus oocytes and the currents were measured with a two-microelectrode voltage-clamp technique. Substitution of the S1–S4 region of Kv2.1 subunits by the ones of Kv1.2 resulted in chimeric channels which activated more rapidly than Kv2.1. Furthermore, activation kinetics were nearly voltage-independent in contrast to the pronounced voltage-dependent activation kinetics of both parent channels. Systematic screening of the S1–S4 region by the replacement of smaller protein parts resolved that the main functional changes generated by the S1–S4 substitution were generated by the S2 and the S3 segment. However, the effects of these segments were different: The S3 substitution reduced the effective gating charge and accelerated both a voltage-dependent and a voltage-independent component of the activation time course. In contrast, the S2 substitution accelerated predominantly the voltage-dependent component of the activation time course thereby leaving the effective gating charge unchanged. It is concluded that the S2 and the S3 segment determine the activation kinetics in a specific manner. Received: 13 November 2000/Revised: 5 April 2001  相似文献   

20.
TRPM8, a nonselective cation channel activated by cold, voltage, and cooling compounds such as menthol, is the principal molecular detector of cold temperatures in primary sensory neurons of the somatosensory system. The N-terminal domain of TRPM8 consists of 693 amino acids, but little is known about its contribution to channel function. Here, we identified two distinct regions within the initial N terminus of TRPM8 that contribute differentially to channel activity and proper folding and assembly. Deletion or substitution of the first 40 residues yielded channels with augmented responses to cold and menthol. The thermal threshold of activation of these mutants was shifted 2 °C to higher temperatures, and the menthol dose-response curve was displaced to lower concentrations. Site-directed mutagenesis screening revealed that single point mutations at positions Ser-26 or Ser-27 by proline caused a comparable increase in the responses to cold and menthol. Electrophysiological analysis of the S27P mutant revealed that the enhanced sensitivity to agonists is related to a leftward shift in the voltage dependence of activation, increasing the probability of channel openings at physiological membrane potentials. In addition, we found that the region encompassing positions 40–60 is a key element in the proper folding and assembly of TRPM8. Different deletions and mutations within this region rendered channels with an impaired function that are retained within the endoplasmic reticulum. Our results suggest a critical contribution of the initial region of the N-terminal domain of TRPM8 to thermal and chemical sensitivity and the proper biogenesis of this polymodal ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号