共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fungal Ecology》2015
Leaf litter samples of 12 dicotyledonous tree species (belonging to eight families) growing in a dry tropical forest and in early stages of decomposition were studied for the presence of litter fungi. Equal-sized segments of the leaves incubated in moist chambers were observed every day for 30 d for the presence of fungi. Invariably, the fungal assemblage on the litter of each tree species was dominated by a given fungal species. The diversity of fungi present in the litter varied with the tree species although many species of fungi occurred in the litter of all 12 species. A Pestalotiopsis species dominated the litter fungal assemblage of five trees and was common in the litter of all tree species. The present study and earlier studies from our lab indicate that fungi have evolved traits such as thermotolerant spores, ability to utilize toxic furaldehydes, ability to produce cell wall destructuring enzymes and an endophyte-litter fungus life style to survive and establish themselves in fire-prone forests such as the one studied here. This study shows that in the dry tropical forest, the leaf litter fungal assemblage is governed more by the environment than by the plant species. 相似文献
2.
Dynamics of viable nitrifier community, N-mineralization and nitrification in seasonally dry tropical forests and savanna 总被引:3,自引:0,他引:3
The study was conducted in Vindhyan region, to assess the N-mineralization, nitrification and size of viable community of ammonium- and nitrite-oxidizing bacteria as affected by different sites and seasons. Six different ecosystems (four forests and two savannas), which differ in terms of topography, vegetation and moisture status, were selected for the present study. The soils of the study sites differ significantly in its physico-chemical properties. The savanna site had significantly higher pH (7.2), bulk density (1.37 g cm(-3)) and silt content (67.80%) but lower water holding capacity (1.37%), total-C (16,356 microg g(-1) dry soil), N (1090 microg g(-1) dry soil) and P (213 microg g(-1) dry soil) than forest sites. The soil moisture content, N-mineralization, nitrification rates and numbers of ammonium- and nitrite-oxidizing bacteria were highest in the wet season and lowest in dry season, while the size of mineral-N (NH4(+)-N and NO3(-)-N) showed a reverse trend at the sites. The N-mineralization, nitrification and nitrifier population size differ significantly across the site and season. The numbers of free-living cells of ammonium- and nitrite-oxidizing bacteria were significantly related to each other and to N-mineralization, nitrification, soil moisture and mineral-N components. The N-mineralization, nitrification and the viable number of nitrifying cells were consistently higher for forest soils compared to savanna sites. It was concluded that soil microbial process (N-mineralization and nitrification) and nitrifier population size were dependent on site topography, vegetation cover and soil moisture status. 相似文献
3.
Long-term dynamics of a tropical savanna bird community 总被引:1,自引:0,他引:1
Jean-Marc Thiollay 《Biodiversity and Conservation》1998,7(10):1291-1312
Complete two-month censuses of diurnal raptors and strip transect counts of other bird species were compared between 1968–1972 and 1996 to assess changes in the bird community of a 2700ha guinean savanna in Ivory Coast. Among 117 non-raptor species recorded at least once on the transects, 25 mostly uncommon species were absent in 1996 (but only two of them were likely to be extinct in the study area), 4 were first seen in 1996, 14 decreased and 4 increased significantly. All six large forest raptors and resident savanna eagles disappeared before the mid-1980s. Among the 12 remaining breeding raptors, 4 species increased (including the 2 seasonal migrants), 4 species remained stable (including the 2 forest accipiters) and 4 species decreased, but not significantly (including the 2 largest taxa). All 14 non-breeding raptors (Palearctic and African migrants) remained stable or increased. With on average 63 breeding pairs per 1000ha, this area still supports one of the highest densities of diurnal raptors ever recorded. The geographic distributions, seasonal movements and ecological requirements of species involved suggest the most likely origin of specific changes observed. They were attributed, in roughly similar proportion, to: (i) decreasing rainfall (southward shifts leading to appearance or increase of some resident or migrant species); (ii) deforestation, agricultural development and hunting pressure around the reserve (extinction of larger species following habitat fragmentation or degradation, increase of some species); and (iii) habitat modifications inside the reserve (increasing tree cover, invasion of dense thickets, illegal exploitation of palms). The overall community of this small protected area, however, exhibited a remarkable stability during the last 30 years, in spite of dramatic habitat changes outside its limits. 相似文献
4.
A quantitative study is presented of the tropical deciduous forest located in the Sierra de La Laguna in the southern part of the peninsula of Baja California, Mexico with data on structure, species composition, diversity, density, and abundance of perennial plants.4 study plots were selected to represent the predominant geomorphologic units, and to include topographic and climatic variations reflected by the distribution of this vegetation on the lowlands of slopes facing the Gulf of California and the Pacific Ocean.25 families containing 67 perennial species were found on the lowlands, with Leguminosae, Cactaceae, and Euphorbiaceae best represented. A high family diversity was found in the plots, but there was a low number of species per family. Dissimilarities between sites were found to be reflected significantly in growth-form abundances as well as in structural features and species diversity. Results show that the xeric environment, the low number of species, and the high incidence of dominant shrub species confer the vegetation of the lowlands simpler structural traits than those described for other tropical dry forests. 相似文献
5.
We studied for two years the seasonal changes in plant available nitrate and ammonium nitrogen (N), nitrification, N-mineralization, microbial biomass carbon (MBC), nitrogen (MBN) and phosphorus (MBP) in two forest and three cropland sites, derived from a tropical forest ecosystem of India. Results indicated that seasonal values of nitrate N, ammonium N and phosphate P ranged from 7.33–12.99, 5.1–10.22 and 4.0–7.8 μg g?1 in forest and 4.13–9.26, 9.35–14.46 and 2.8–5.8 μg g?1 in cropland ecosystems, respectively, with maximum values in summer and minimum in rainy seasons. Nitrification and N-mineralization values varied from 6–28 and 4–26 μg g?1 mo?1 in forest and 3–14 μg g?1 mo?1 and 4–17 μg g?1 mo?1 in cropland, with maximum values in rainy season and minimum in summer season.MBC, MBN MBP ranged from 393–753, 34–80 and 16–36 μg g?1 in forests and 186–414, 21–41 and 11–22 μg g?1 in croplands, being maximum in summer and minimum in rainy seasons. There was gradual increase in the values of inorganic N, nitrification, N-mineralization and MBC, MBN and MBP along the age of cropland. Analysis of variance indicated significant difference in the concentration of inorganic N, nitrification and N-mineralization and MBC, MBN and MBP due to sites and seasons.Cultivation caused decline in the mean annual organic C, N and P by 42%, 29% and 13%. The values of nitrate N were decreased by 23–38%, while ammonium N was increased by 39–74%. Nitrification and N-mineralization values were reduced by 39–63% and 40–60%, respectively. Microbial C, N and P were reduced by 44–54%, 41–50% and 28–44%, respectively. Nonetheless, the contribution of soil microbial biomass reflected in total N was enhanced from 4.76% in forest to 5.03% in cropland ecosystem. Enhancement of plant available ammonium-N and microbial contribution in total N are an indicator of natural conserving mechanism to check the nitrogen loss from the nutrient poor agro-ecosystem. 相似文献
6.
Abstract. Four humid grassland communities at three different locations in Meghalaya, India were analysed during 1988 and 1989 for species and life-form composition, diversity and dominance in relation to altitude, soil and prevailing disturbances. Due to the adverse interactive influences of exceptionally high annual rainfall (> 10 000 mm), topography and human interference on soil fertility, the grassland at Cherrapunji, at 1300 m altitude, had a low species diversity (H'= 1.74) and was dominated by three perennial grass species. Similar grasslands, at both higher and lower altitudes on fertile soil and with lower rainfall (ca. 2000 mm), showed higher diversity values (H'= 2.28 at Burnihat and 2.31 at Upper Shillong). The proportion of perennial species and chamaephytes increased with elevation. At the high altitude site a grassland under short-term protection from fires and grazing had a higher species richness, density and basal cover than an unprotected grassland. All grasslands show a clear seasonality, albeit with different patterns, with a maximum in density and basal cover in August. The differences in structure and seasonality are discussed in terms of different levels of stress. 相似文献
7.
Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest 总被引:5,自引:0,他引:5
José Luis Andrade Frederick C. Meinzer Guillermo Goldstein Stefan A. Schnitzer 《Trees - Structure and Function》2005,19(3):282-289
Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (D) of xylem and soil water, soil volumetric water content (v), and basal sap flow were measured during the 1997 and 1998 dry seasons. Sap flow of several neighboring trees was measured to assess differences between lianas and trees in magnitudes and patterns of daily sap flow. Little seasonal change in v was observed at 90–120 cm depth in both years. Mean soil water D during the dry season was –19 at 0–30 cm, –34 at 30–60 cm, and –50 at 90–120 cm. Average values of xylem D among the liana species ranged from –28 to –44 during the middle of the dry season, suggesting that water uptake was restricted to intermediate soil layers (30–60 cm). By the end of the dry season, all species exhibited more negative xylem D values (–41 to –62), suggesting that they shifted to deeper water sources. Maximum sap flux density in co-occurring lianas and trees were comparable at similar stem diameter (DBH). Furthermore, lianas and trees conformed to the same linear relationship between daily sap flow and DBH. Our observations that lianas tap shallow sources of soil water at the beginning of the dry season and that sap flow is similar in lianas and trees of equivalent stem diameter do not support the common assumptions that lianas rely primarily on deep soil water and that they have higher rates of sap flow than co-occurring trees of similar stem size. 相似文献
8.
9.
Biomass and carbon accumulation in a fire chronosequence of a seasonally dry tropical forest 总被引:1,自引:0,他引:1
Seasonally dry tropical forests (SDTF) are a widely distributed vegetation type in the tropics, characterized by seasonal rainfall with several months of drought when they are subject to fire. This study is one of the first attempts to quantify above- and belowground biomass (AGB and BGB) and above- and belowground carbon (AGC and BGC) pools to calculate their recovery after fire, using a chronosequence approach (six forests that ranged form 1 to 29 years after fire and mature forest). We quantified AGB and AGC pools of trees, lianas, palms, and seedlings, and BGB and BGC pools (Oi, Oe, Oa soil horizons, and fine roots). Total AGC ranged from 0.05 to nearly 72 Mg C ha−1 , BGC from 21.6 to nearly 85 Mg C ha−1 , and total ecosystem carbon from 21.7 to 153.5 Mg C ha−1 ; all these pools increased with forest age. Nearly 50% of the total ecosystem carbon was stored in the Oa horizon of mature forests, and up to 90% was stored in the Oa-horizon of early successional SDTF stands. The soils were shallow with a depth of <20 cm at the study site. To recover values similar to mature forests, BGC and BGB required <19 years with accumulation rates greater than 20 Mg C ha−1 yr−1 , while AGB required 80 years with accumulation rates nearly 2.5 Mg C ha−1 yr−1 . Total ecosystem biomass and carbon required 70 and 50 years, respectively, to recover values similar to mature forests. When belowground pools are not included in the calculation of total ecosystem biomass or carbon recovery, we estimated an overestimation of 10 and 30 years, respectively. 相似文献
10.
A study was carried out in Sariska Tiger Reserve in India to investigate the effects of anthropogenic disturbance caused by biomass extraction on the bird communities of tropical dry forests. The study was based on comparisons of the avifaunal community as well as vegetation structure between strictly protected ('undisturbed') and intensively used ('disturbed') sites that were demarcated a priori on the basis of disturbance indicators. There was no significant difference in the number of recorded species and bird abundance between disturbed and undisturbed sites. However, bird species diversity was significantly lower in disturbed sites. Bird species composition was found to differ significantly between disturbed and undisturbed sites and was associated with the measured disturbance indicators. Changes in bird species composition occurred because of seven of 26 locally abundant bird species (26.9%) responding significantly to the disturbance regime. All the affected bird species are primarily insectivorous. Bird species composition was significantly related to six vegetation structural variables, including two that were significantly altered by disturbance. Changes in vegetation structure accounted for all the changes in bird species composition caused by disturbance. However, vegetation structure had additional effects on bird species composition besides those caused simply by disturbance. Thus, our study indicates that forest use in the form of chronic biomass extraction can have significant effects upon bird diversity and species composition of tropical dry forest. There is a need to retain a proportion of natural ecosystems as inviolate if the full complement of biodiversity is to be conserved. 相似文献
11.
Seasonality of relative population abundance in different groups of soil-surface arthropods was investigated monthly by pit-fall traps during a 2-year period in the grassland and tree-planted areas of a tropical semi-arid savanna at Warangal (south India). Densities of most groups were lowest during summer and highest during the rainy season. They were less abundant during winter. Arthropods were recorded in higher numbers in tree-planted compared to grassland areas. Certain arthropods that were found only during part of the year were recorded for a longer period in the tree-planted area. Formicidae,Monomorium indicum Forel,Crematogaster sp. andPachycondyla? tesserinoda (Emery), and Coleoptera,Pachycera sp. reached maximum densities in the rainy season and minimum numbers during winter and summer in the grassland area. However, these species had lower densities during the rainy season and reached maximum densities during winter and summer in the tree-planted area. The seasonal abundance of arthropods showed significant linear correlations with different abiotic environmental variables such as rainfall, soil moisture, organic matter, soil and air temperatures, soil pH, relative humidity at the soil surface, and potassium and phosphorus of surface soil. Soil moisture and rainfall were generally the strongest correlates with densities, particularly in the grassland area. 相似文献
12.
G. D. COOK 《Austral ecology》1994,19(4):359-365
Abstract The nutrient loads contained in the grassy fuel before fires, and of ash subsequently, were compared to determine the fluxes of macronutrients, copper and zinc during fires at Kapalga in Kakadu National Park. The fluxes were estimated in three vegetation types: forest, woodland and open woodland. The magnitudes of the fluxes were greatest in the forest community where grassy fuel loads were highest at about 6.3 t ha?1. In these sites, 54–94% of all measured nutrients in the fuel were transferred to the atmosphere during the fires. For each nutrient, the proportion transferred to the atmosphere as entrained ash was calculated by assuming that calcium was not volatilized during the fires. If the transfer of entrained ash represents local redistribution only, then rainfall accession and the deposition of these particu-lates should replace most of the losses of all nutrients except nitrogen (N). Estimated rates of biological fixation of N appear to be insufficient to replace the annual losses of N. It is therefore concluded that a regime of annual fires that completely burn the available grassy fuel would deplete N reserves in these savannas, unless there are other sources of biologically fixed N, which are unknown at present. 相似文献
13.
A series of coal mine spoils (5, 10, 12, 16 and 20-yr old) in a dry tropical environment was sampled to assess the changes with time in spoil characteristics, species composition and plant biomass. Coarse fragments (>2 mm) decreased with age of mine spoil while the proportion of 0.2–0.1 mm particles increased. Total soil N, mineral N, NaHCO3-extractable Pi, and exchangeable K increased with age of mine spoil and these parameters were lower in mine spoils than native forest soil even after 20 years of succession. Exchangeable Na decreased with age of mine spoil and in 20-yr old spoil it was higher than native forest soil. Plant community composition changed with age. Only a few species participated in community formation. Species richness increased with age, while evenness and species diversity declined from 5-yr old to 16-yr old community with an increase in the 20-yr old community. A reverse trend occurred for concentration of dominance. Area-weighted shoot and root biomass of other species increased with the age of the mine spoil while that of Xanthium strumarium patches declined with age. Data collected on spoil features, microbial C, N and P, and shoot and root biomass when subjected to Discriminant Analysis indicated a continued profound effect of age. 10 and 12-yr old mine spoils were closer to each other, and 5 and 20-yr old spoils were farthest apart. 相似文献
14.
Litterfall from a Melaleuca forest was investigated as part of chemical cycling studies on the Magela Creek floodplain in tropical, northern Australia. The forest contained two species of tree, Melaleuca cajaputi and Melaleuca viridiflora, with a combined average density of 294 trees ha–1. The M. viridiflora trees had diameter breast height measurements ranging from 11.8 to 62.0 cm, median class 25.1–30.0cm and a mean value of 29.2±1.0 cm, compared to 13.0 to 66.3 cm, 30.1–35.0cm and 33.5±1.0cm for M. cajaputi trees. A regression model between tree height, diameter breast height and fresh weight was determined and used to calculate average tree weights of 775±1.6kg for M. viridiflora and 1009±1.6kg for M. cajaputi, and a total above-ground fresh weight of 263±0.3t ha–1. The weight of litter recorded each month on the ground beneath the tree canopy ranged from 582±103 to 2176±376 g m–2 with a monthly mean value of 1105±51 g m–2. The coefficient of variation of 52% on this mean indicates the large spatial and temporal variability in litter distribution over the study site. This variability was greatly affected by the pattern of water flow and litter transport during the Wet season. Litterfall from the trees was evaluated using two techniques - nets and trays. The results from these techniques were not significantly different with annual litterfall collected in the nets being 705 ± 25 g m–2 and in the trays 716±49 g m–2. The maximum monthly amount of litterfall, 108 ±55g m–2, occurred during the Dry season months of June–July. Leaf material comprised 70% of the total annual weight of litter, 480±29 g m–2 in the nets and 495 ± 21 g m–2 in the trays. The tree density and weight of litter suggest that the Melaleuca forests are highly productive and contribute a large amount of material to the detrital/debris turnover cycle on the floodplain. 相似文献
15.
Tropical dry forests have been reduced to less than 0.1% of their original expanse on the Pacific side of Central America and are considered by some to be the most endangered ecosystem in the lowland tropics. Plots 1000 m2 were established in seven tropical dry forests in Costa Rica and Nicaragua in order to compare levels of species richness to other Neotropical dry forest sites and to identify environmental variables associated with species richness and abundance. A total of 204 species and 1484 individuals 2.5 cm were encountered. Santa Rosa National Park was the richest site with the highest family (33), genera (69), and species (75) diversity of all sites. Species richness and forest structure were significantly different between sites. Fabaceae was the dominant tree and shrub family at most sites, but no species was repeatably dominant based on number of stems in all fragments of tropical dry forest. Central American dry forests had similar species richness when compared to other Neotropical forests. There was no correlation between forest cover within reserves, or precipitation and plant species richness. There was a significant correlation between anthropogenic disturbance (intensity and frequency of fire, wood collection, grazing) and total species richness, tree and shrub species richness, and liana abundance. These results suggest controlling levels on anthropogenic disturbance within reserves should be a high priority for resource managers in Central America. Further research in forest fragments which examine individual and a combination of disturbance agents would help clarify the importance of anthropogenic disturbance on species richness and abundance. 相似文献
16.
We document spatial changes in species diversity, composition, community structure, and mortality of trees across a gradient
of water availability in a tropical dry forest in western Mexico. This gradient occurs along the main stream of a small watershed
of less than 1 km in length. Four 30 × 80 m plots were established systematically to include the driest (ridge top of the
watershed) to the wettest sites (watershed bottom) within this watershed. All stems larger than 5 cm were identified, and
measured for diameter and height. Dead stems larger than 5 cm were measured and classified as: a) found on live or dead trees,
and b) standing (“snags”) or lying (“downlogs”) on the ground. The number of recorded species per plot declined from 73 to
44 species as water availability decreased. A decline in estimated total richness, and in Shannon-Wiener and Simpson diversity
indices was also observed in the drier plots. Species composition strongly changed along the gradient, with the two ends of
the gradient sharing only 11% of the species. Stem density and percentage of dead stems and trees increased in abundance and
basal area from the wetter to the drier sites. Tree and stem size (basal area, height and stem diameter) showed the opposite
trend. Nonetheless, total basal area of live trees was largest at the two end gradient locations and oscillated between 12.22
m2 ha−1 and 7.93 m2 ha−1. Proportion of snags increased towards the driest site (from 46 to 72%), while that of down logs decreased. Overall, our
results suggest that small-scale gradients of water availability play a paramount role in the spatial organization of tree
communities in seasonal tropical environments.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
17.
R. J. FENSHAM 《Austral ecology》1998,23(4):405-407
Abstract Live and dead trees were measured in macropod-grazed and cattle-grazed Eucalyptus woodland in north Queensland following a severe drought between 1992 and 1994. ANCOVA revealed no effect of grazing treatment on the proportion of drought death. Twenty-seven per cent of all tree species were killed by the drought and the value ranged from about 4% for Corymbia dallachiana (Benth.), K. D. Hlll & L. A. S. Johnson to 29% for the dominant species Eucalyptus xanthoclada Brooker and A.R.Bean, although differences were non-significant. There was also no significant difference in mortality between poles (< 10 cm d.b.h.) and trees (> 10 cm d.b.h.). The study highlights a natural (as in pre-European), catastrophic structural collapse of tropical eucalypt woodland. Presumably the dramatic declines in basal area as a result of drought are recovered during successive relatively wet years by thickening events, although clearly this severe drought and its after-effects warrant further study. 相似文献
18.
Synopsis We experimentally manipulated fish grazing pressure to determine whether fish herbivory played an important role in the structure of a Costa Rican stream. Non-planktonic plant matter represented a significant percentage ( 25%) of the diet of 77% of the 17 fish species in the community. We prevented fish grazing on macrophytes, tree leaves, and periphyton using fish exclusion cages. Fish grazedPanicum sp., used as a generalized aquatic macrophyte, to the stems after 6 days in control areas, and consumed all or much ofFicus insipida andMonstera sp. leaves when placed in the stream after 48 hours. Plants and leaves experimentally protected by cages remained intact. In periphyton studies, fifty percent more ash free dry weight occurred on 25 × 25 cm floor tiles protected from fish grazing by cages than on tiles in roofless controls exposed to fish grazing for 19 days, suggesting a reduction in periphyton biomass. These results demonstrate that fish herbivory affects macrophyte abundance, and impacts the amount of leaf litter in the stream. Fish herbivory may also have an important effect on overall periphyton biomass. Herbivorous fish species generally represent a larger proportion of the total fish community in tropical compared to temperate streams; thus fish grazing is more likely to have an important influence on plant and animal abundances and distributions in tropical streams. 相似文献
19.
Leaf-litter and changing nutrient levels in a seasonally dry tropical hardwood forest,Belize, C.A. 总被引:3,自引:0,他引:3
Summary Total above ground plant biomass in a 45 year old seasonally dry tropical hardwood forest was estimated to be approximately 56,000 kg/ha oven dry weight. Nutrients immobilized in the standing vegetation were: N, 203 kg/ha; P, 24 kg/ha; K, 234 kg/ha; Ca, 195 kg/ha; Mg, 47 kg/ha; Na, 9 kg/ha; Mn, 1 kg/ha; Cu, 0.5 kg/ha; Zn, 3 kg/ha; Fe, 4 kg/ha. Total nutrients returned each year through the litter were: N, 156 kg/ha; P, 9 kg/ha; K, 59 kg/ha; Ca, 373 kg/ha; Mg, 32 kg/ha; Na, 5 kg/ha; Mn, 1 kg/ha; Al, 21 kg/ha; Zn, 0.3 kg/ha; Fe, 9 kg/ha. Half of the nutrients immobilized in the standing vegetation were found in the leaves and are returned annually to the soil. Although litter fall is interrupted during the year, the mean nutrient content of the litter was high –5.2%.A decomposition rate of 0.48 percent per day was considered high for a seasonally dry tropical hardwood forest. Fluctuations in soil nutrient levels showed a sharp increase at the start of the rainy season. Later during the dry season nutrient levels decreased to concentrations similar to what they were just prior to the rainy season. Soil organic matter levels were very high –20% in the top 12 cm. 相似文献
20.
Culm recruitment, standing crop biomass, net production and carbon flux were estimated in mature (5 years after last harvest)
and recently harvested bamboo (Dendrocalamus strictus (Roxb.) Nees) savanna sites in the dry tropics. During the 2 study years bamboo shoot recruitment was 1711–3182 and 1432–1510
shoots ha−1 in harvested and mature sites, respectively. Corresponding shoot mortality was 66–93% and 62–69%, respectively. Total biomass
was 34.9 t ha−1 at the harvested site and 47.4 t ha−1 at the mature site. Harvesting increased the relative contribution of belowground bamboo biomass. Annual litter input to
soil was 2.7 and 5.9 t ha−1 year−1 at the harvested and mature sites, respectively. The bulk of the annual litterfall (78–88%) occurred in the cool dry season
(November to February). The mean litter mass on the savanna floor ranged from 3.1 to 3.3 t ha−1; at the harvested site wood litter contributed 70% of the litter mass and at the mature site leaves formed 77% of the litter
mass. The mean total net production (TNP) for the two annual cycles was 15.8 t ha−1 year−1 at the harvested site and 19.3 t ha−1 year−1 at the mature site. Nearly half (46–57%) of the TNP was allocated to the belowground parts. Short lived components (leaves
and fine roots) contributed about four-fifths of the net production of bamboo. Total carbon storage in the system was 64.4
t ha−1 at the harvested site and 75.4 t ha−1 at the mature site, of which 23–28% was distributed in vegetation, 2% in litter and 70–75% in soil. Annual net carbon deposition
was 6.3 and 8.7 t ha−1 year−1 at harvested and mature sites, respectively. 相似文献