首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of validoxylamine A (VAA), a potent and specific trehalase inhibitor, on the induction of non-diapause in Bombyx mori was examined. The VAA induced non-diapause eggs and prevented the glucogen accumulation in the eggs. Trehalase activity of the pupal ovary was effectively inhibited by the VAA injection.  相似文献   

2.
Trehalase from the bean-shaped accessory glands of the male mealworm beetle, Tenebrio molitor, was purified by acid treatment, with subsequent chromatography on columns of DEAE-cellulofine and Sephacryl S-300. The molecular masses of the native and the denatured forms were estimated to be 43 and 62 kDa by gel filtration and SDS-PAGE, respectively, an indication that the trehalase may be composed of a single polypeptide. The optimum pH of the reaction catalyzed by trehalase was 5.6–5.8. The K m for trehalose was 4.4 mmol·l–1. Immunohistochemical experiments with trehalase-specific antiserum showed that the enzyme was localized in one specific type of secretory cell in the bean-shaped accessory gland epithelium and within the semisolid secretory mass that was a precursor to the wall of spermatophore. SDS-PAGE and immunoblotting analysis revealed the presence of a polypeptide of about 62 kDa in the spermatophore, Immunohistochemical observations showed that the trehalase was located at the outgrowth in the anterior portion of the spermatophore. When a fresh spermatophore was immersed in phosphate-buffered saline it discharged sperm in the same manner as in the bursa copulatrix of the female. Before the rupture of the expanded bulb of the spermatophore, almost all of the trehalase had dissolved in the phosphate-buffered saline. The addition of validoxylamine A to the saline, a specific inhibitor of trehalase, did not affect the expansion and evacuation of the spermatophore. These results demonstrate that trehalase, synthesized by a specific type of secretory cell in the bean-shaped accessory gland epithelium, is actively passed into the lumen of the bean-shaped accessory gland and then incorporated into the spermatophore. Trehalase appears to be one of the structural proteins of the spermatophore, although the possibility can not yet be completely ruled out that the trehalase-trehalose system functions for the nourishment and/or activation of the sperm in the bursa copulatrix of the female.Abbreviations BAG bean-shaped accessory gland(s) - DEAE diethylaminoethyl - Kpi buffer K2HPO4/KH2PO4 buffer (pH 7.0) - PAGE polyacrylamide gel electrophoresis - PBS phosphate-buffered saline - SDS sodium dodecy sulphate - Spph spermatophore(s) - TAG tubular accessory gland(s)  相似文献   

3.
Morchella conica Pers. strains of the study were isolated from fruit bodies collected in ash-mixed forests. At first, the strains were cultured on potato dextrose agar (PDA), then on modified Murashige and Skoog (MS) solid agar media. A normal-growing strain was chosen for the trehalase induction experiments. During the trehalase induction treatment, mycelia were grown in liquid culture containing different concentrations of trehalose. After the induction period of trehalase enzymes, physiological state of the mycelium and the oxidative stress were monitored in the vegetative mycelia by measuring the change of the malondialdehyde content, superoxide dismutase enzyme activity, the fresh and dry weight. The examined Morchella conica strain utilized the trehalose properly. The rising amount of the trehalose triggered the increase of the mycelial trehalase enzyme activity. Our results clearly proved that both neutral and acidic trehalase isoenzyme activity of the Morchella conica mycelium are inducible and are playing important role in the utilization of external trehalose.  相似文献   

4.
Summary The trehalase content of different yeasts varies widely. A strain ofCandida tropicalis was found to be the best source of this enzyme among the yeasts tested. The trehalase activity in this yeast could be increased 8.5 times by growing it on trehalose rather than glucose. Thus trehalase is an adaptive enzyme inC. tropicalis. It was found that the amount of trehalase which could be solubilized increased with increasing pH during autolysis of the cells, none being released from the cell debris at pH 4.5 and most at pH 6.3. Some evidence was obtained to show that the solubilization was caused by an enzyme. The stability of trehalase under various conditions was studied. A partial purification was achieved by precipitation with 40% ethanol at a temperature of −18°C. The maximum temperature of the enzyme was 48°C., and the optimum pH ranged from 4.1 to 5.3  相似文献   

5.
Isoforms of trehalase and invertase of Fusarium oxysporum   总被引:1,自引:0,他引:1  
Enzymatic assays and native PAGE were used to study trehalase and invertase activities, depending on culture age and different sugar conditions, in cell-free extracts, culture filtrates and ribosomal wash of Fusarium oxysporum. The activity of invertase preceded that of trehalase; in the exponential phase of growth, mainly invertase activity was produced, whereas trehalase activity was high in the stationary phase. In this last phase of growth, the activity of intracellular trehalase was repressed by monosaccharides, whereas disaccharides, especially lactose and starch, enhanced the activity of intracellular and extracellular trehalase. However, invertase activity was not repressed under these conditions and had the maximal activity in the presence of saccharose. Intracellular trehalase appeared in a single, high-molecular weight (120 kDa) form, whereas the extracellular enzyme appeared in a single, low-molecular weight (60 kDa) form. The activity pattern of invertase isoforms indicated the occurrence of three forms of intracellular enzyme with the main activity band at 120 kDa and two isoforms of extracellular enzyme. In the ribosomal wash, high-molecular weight isoforms of both trehalase and invertase were identified. A possible role of trehalase and invertase in carbohydrate metabolism of fungal pathogens is also discussed.  相似文献   

6.
Neutral trehalase was purified from stationary yeast ABYS1 mutant cells deficient in the vacuolar proteinases A and B and the carboxypeptidases Y and S. The purified electrophoretically homogeneous preparation of phosphorylated neutral trehalase exhibited a molecular mass of 160,000 Da on nondenaturing gel electrophoresis and of 80,000 Da on sodium dodecyl sulfate-gel electrophoresis. Maximal activity (114 mumol of trehalose min-1 x mg-1 at 37 degrees C) was observed at pH 6.8-7.0. The apparent Km for trehalose was 34.5 mM. Among seven oligosaccharides studied, the enzyme formed glucose only from trehalose. Neutral trehalase is located in the cytosol. A polyclonal rabbit antiserum raised against neutral trehalase precipitates the enzyme in the presence of protein A. The antiserum does not react with acid trehalase. Dephosphorylation by alkaline phosphatase from Escherichia coli of the active phosphorylated enzyme is accompanied by greater than or equal to 90% inactivation. Rephosphorylation by incubation with the catalytic subunit of beef heart protein kinase is accompanied by reactivation and incorporation of 0.85 mol of phosphate/mol subunit (80,000 Da). The phosphorylated amino acid residue was identified as phosphoserine.  相似文献   

7.
A rapid and reliable method for the preparation of homogeneous trehalase from the cellular slime mold, Dictyostelium discoideum for usage in enzyme characterization studies and trehalose assays was developed. This procedure takes advantage of the fact that trehalase activity is secreted by Dictyostelium during the course of development, the major fraction being released late in fruiting body formation. Purification of trehalase to electrophoretic homogeneity was accomplished utilizing the techniques of ultrafiltration, streptomycin sulfate precipitation, ammonium sulfate fractionation, DEAE-Sephacel chromatography and preparative disc gel electrophoresis. Analysis of the purified enzyme by analytical polyacrylamide disc gel electrophoresis demonstrated the presence of a single protein band which was stainable with Coomassie blue. Assay of trehalase activity in eluates from segments of a companion gel indicated that all of the recovered trehalase activity was associated with this band of protein. Examination of the substrate specificity of the purified enzyme indicated absolute specificity for trehalose.  相似文献   

8.
To utilize specific fetal markers in amniotic fluid for prenatal detection of fetal anomalies, it is necessary to determine the precise tissue origin of these markers. In rabbit fetuses, we distinguished between intestinal and renal forms of trehalase (alpha,alpha'-trehalose-1-D-glucohydrolase, EC 3.2.1.28) in amniotic fluid on the basis of differences in net electric charges. Trehalase was solubilized from purified brush-border membranes of fetal rabbit kidney and intestine by Triton X-100 treatment, whereas the trehalase activity in amniotic fluid was soluble. The kinetic properties of trehalase from intestine, kidney and amniotic fluid were very similar. The Mr of the soluble amniotic fluid trehalase was between 72,600 and 66,300 from hydrodynamic parameters, depending on the amount of sugar bound to the enzyme, and 48,500 by radiation inactivation, a method which detects only the protein part of the enzyme. For membrane-bound trehalase from kidney and intestine in situ the radiation inactivation method also gave a molecular size of around 49,000. Isoelectric focusing of freshly solubilized membranes allowed us to distinguish between renal and intestinal forms of trehalase in rabbit fetuses on the basis of different isoelectric points. Each trehalase form was also present in the amniotic fluid but in varying proportions depending on the gestational age at which the amniotic fluid was collected. The results suggest that early in gestation amniotic fluid trehalase activity originates exclusively from the fetal kidney but that more and more intestinal enzyme is released into the amniotic cavity as the fetus develops. Similar results were also obtained when ion-exchange chromatography was used to separate the various trehalase forms. The development of trehalase activity in rabbit fetal kidney and intestine correlates well with its occurrence in the amniotic fluid; trehalase activity in the kidney develops early in gestation whereas the intestinal trehalase activity develops just before term.  相似文献   

9.
The trehalase I of Dictyostelium discoideum exhibits characteristics of a typical lysosomal enzyme. The enzyme is glycosylated and carries a number of negatively charged components which cause it to be a very acidic protein. Strain M31, bears a recessive mutation mod A which alters the post-translational modification of several lysosomal enzymes including trehalase. A direct consequence of this mutation is a reduction of the negatively charged components on lysosomal enzymes. This reduction in negativity is observed in the altered chromatographic and electrophoretic behaviour of M31 trehalase.Trehalase I is synthesized during spore germination. Tunicamycin prevents the formation of recoverable trehalase from germinating spores but does not interfere with the germination process. These results indicate that the trehalase I synthesized during spore germination is not required for the successful completion of spore germination. Minor modification in the glycosylation, as seen in strain M31, does not affect the enzymatic activity. However, when glycosylation is greatly reduced by tunicamycin the enzyme is inactive.  相似文献   

10.
The purification and characterization of trehalase from common bean nodules as well as the role of this enzyme on growth, nodulation nitrogen fixation by examining the effects of the trehalase inhibitor validamycin A, was studied. Validamycin A did not affect plant and nodule mass, neither root trehalase and nitrogenase activity; however this treatment applied at the time of sowing increased nodule number about 16% and decreased nodule trehalase activity (16-fold) and the size of nodules. These results suggest that nodule trehalase activity of Phaseolus vulgaris could be involved in nodule formation and development. In addition, acid trehalase (EC 3.2.1.28) was purified from root nodules by fractionating ammonium sulfate, column chromatography on DEAE-sepharose and sephacryl S-300, and finally on native polyacrylamide gel electrophoresis. The purified homogeneous preparation of native acid trehalase exhibited a molecular mass of 42 and 45 kDa on SDS-PAGE. The enzyme has the optimum pH 3.9, Km of 0.109 mM, Vmax of 3630 nkat mg-1 protein and is relatively heat stable. Besides trehalose, it shows maximal activity with sucrose and maltose and, to a lesser degree melibiose, cellobiose and raffinose, and it does not hydrolyze on lactose and turanose. Acid trehalase was activated by Na+, Mn2+, Mg2+, Li+, Co2+, K+ and inhibited by Fe3+, Hg+ and EDTA.  相似文献   

11.
Cryptic trehalase from Saccharomyces cerevisiae was purified about 3000-fold. The recovery of 970% of the original "activity" indicated the removal of an inhibitor of the enzyme. Active trehalase, obtained through phosphorylation of cryptic trehalase by cAMP-dependent protein kinase, was isolated by chromatography on DEAE-cellulose. A major phosphorylated protein, with an apparent Mr of 86,000, was detected after SDS-polyacrylamide gel electrophoresis. This protein band correlated exactly with the elution profile of trehalase activity and 32Pi incorporation into the enzyme on DEAE-cellulose chromatography. Partially purified active trehalase showed absolute specificity towards trehalose with an apparent Km of 4.79 X 10(-3) M. Both forms of the enzyme showed an apparent molecular weight of 160,000, by gel filtration. Centrifugation on a glycerol density gradient indicated multiple forms of trehalase-c, with Mr of 320,000, 160,000, and 80,000. After activation of each of these forms by protein kinase, a single form of trehalase-a was observed, with a Mr of 160,000. Trehalase-c appears to be a totally inactive form of the enzyme. The only mechanism of activation seems to be phosphorylation by cAMP-dependent protein kinase. When the protein kinase concentration was varied, at a fixed trehalase-c concentration, a sigmoidal activation plot was obtained. This result suggests the occurrence of multiple forms of cryptic trehalase.  相似文献   

12.
Trehalases from the ascospores of Neurospora tetrasperma and the mycelium of N. crassa were compared. Enzymes from both sources have identical electrophoretic mobilities, K(m)'s, responses to pH, immunological reactions, and activities in low-molarity buffers. Because both enzymes are so similar, conclusions about the properties of the ascospore enzyme may, be made by studying mycelial trehalase. Mycelial trehalase is most active and stable in low-molarity buffers. The enzyme exists in at least three species; the smallest has a molecular weight between 105,000 and 125,000 and is predominant in low-molarity buffers at 37 C. The stability of trehalase to heating at 65 C can be increased by increasing enzyme concentration and by the addition of polyols. Ascospores contain large amounts of trehalose, which protects trehalase from heat inactivation at 65 C. The importance of this phenomenon in vivo and its relationship to the localization of trehalase in ascospores is discussed.  相似文献   

13.
The presence of trehalase and trehalose phosphorylase in L3 and L4 larvae of Anisakis simplex was demonstrated. The activity of trehalase and trehalose phosphorylase in L3 larvae was 6 and 10 times higher, respectively, than in L4 larvae. This suggests that trehalose metabolism is more important for L3 than LA larvae. Trehalases of L3 and L4 differ in their characteristics. The enzyme of L3 was present mainly in the lysosomes and cytosol, whereas in L4 the highest enzyme activity was measured in the lysosomal fraction. Trehalase activity was increased by 29% in L3 and 55% in L4 with the addition of Mg2+ (0.1 mmol). Tris inhibited trehalase in L3 larvae by 42% and in L4 by 25%. The enzymes differed in their reaction to EDTA, CaCl2, ZnCl2, and CH2ICOOH (all 0.1 mmol). High activity of trehalase from L3 larvae was measured within the pH range of 5.0 to 6.5, with an optimum pH of 6.1. The trehalase was a thermally tolerant enzyme from 25 C to 60 C. The enzyme lost half of its activity after preincubation without substrate above 75 C. The paper also discusses the similarities and differences in characteristics of trehalase from A. simplex larvae and presents the comparison to enzymes from other nematodes.  相似文献   

14.
Abstract Candida utilis cells contain a regulatory trehalase enzyme (280 kDa) which can be activated by cAMP-dependent phosphorylation. A 100-fold purification of this enzyme activity results in the enrichment of a protein band of apparent M r 70 000 as identified by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). This component is phosphorylated in vivo under conditions in which trehalase activation occurs in whole cells. It is concluded that the trehalase enzyme might be a tetramer, composed of 4 identical 70-kDa subunits.  相似文献   

15.
Occurrence and distribution of trehalase were examined in cytoplasmic and cell wall fractions of cultured cells of morning-glory, soybean and persimmon. Also, some enzymatic properties and solubilization of the enzyme from cell walls were examined. Trehalase was present in both fractions of morning-glory and persimmon cells while trehalase was present only in the cytoplasmic fraction of soybean cells. Morning-glory trehalases in both fractions showed the same optimum pH at 5.5, while persimmon trehalases in both fractions showed the same optimum pH at 6.0. Soybean enzyme in the cytoplasmic fraction showed two optimum activities at 4.0 and 6.5. Morning-glory cell wall bound trehalase was solubilized with various IM salts at about 70 to 75%. Also, the enzyme was solubilized with various buffers and the solubilization ratio increased with increasing in pH of a same series buffer. After multiple extractions with IM NaCl, about 15% of the original trehalase activity still remained in cell walls. On the other hand, Triton X-100 and the substrate, trehalose, at the various concentrations did not release trehalase from cell walls. Invertase and cellobiase solubilized from morning-glory cell walls were re-adsorbed to the cell walls. However, readsorption of trehalase to cell walls has not yet been attained. Based on these results, physiological roles of plant cell wall-bound trehalase were discussed.  相似文献   

16.
Abstract Derepressed cells of Schizosaccharomyces pombe 972 h suspended in the presence of glucose or other fermentable sugars displayed a transient activation of trehalase which was not blocked by cycloheximide. Repressed cells were unable to show glucose-induced trehalase stimulation. Nitrogen sources, protonophores or uncouplers failed to produce direct trehalase activation but increased the activity of the enzyme in the presence of glucose. Exogenous cAMP induced a rapid and pronounced stimulation of trehalase in both repressed and derepressed cells suggesting that the response to glucose includes activation of adenylate cyclase as part of a cAMP signalling pathway that increases the catalytic activity of trehalase by enzyme modification.  相似文献   

17.
cDNA encoding the bound type trehalase of the European honeybee was cloned. The cDNA (3,001 bp) contained the long 5' untranslated region (UTR) of 869 bp, and the 3' UTR of 251 bp including a poly(A) tail, and the open reading frame of 1,881 bp consisting of 626 amino acid residues. The Mr of the mature enzyme comprised of 591 amino acids, excluded a signal sequence of 35 amino acid residues, was 69,177. Six peptide sequences analyzed were all found in the deduced amino acid sequence. The amino acid sequence exhibited high identity with trehalases belonging to glycoside hydrolase family 37. A putative transmembrane region similar to trehalase-2 of the silkworm was found in the C-terminal amino acid sequence. Recombinant enzyme of the trehalase was expressed in the methylotrophic yeast Pichia pastoris as host, and displayed properties identical to those of the native enzyme except for higher sugar chain contents. This is the first report of heterologous expression of insect trehalase.  相似文献   

18.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

19.
Synchronous cultures of Saccharomyces cerevisiae prepared by selection of small unbudded cells from an elutriating rotor were used to measure trehalase activity during the cell cycle. After the small cells had been removed from the rotor, the remainder was used to prepare asynchronous control cultures. Both synchronous and control cultures were studied for two cell cycles. In asynchronous cultures the trehalase activity of crude cell lysates rose continuously. In synchronized populations trehalase activity increased from the beginning of budding onwards. However, around the period of cell division the enzyme activity dropped rapidly but transiently by more than 5-fold. The same changes were found during the second budding cycle. Measurements of invertase and glucose-6-phosphate dehydrogenase activities in the same synchronous and asynchronous cultures revealed a continuous increase for both enzymes. Incubation of cell lysates with cAMP-dependent protein kinase before assaying for trehalase resulted in a 2-fold enhancement of enzyme activity in asynchronous control cultures. In synchronized cells this treatment also led to a significant stimulation of trehalase activity, and largely abolished the cell-cycle-dependent oscillatory pattern of enzyme activity. These results suggest that the activity of trehalase during the cell cycle is regulated, presumably at the post-translational level, by a phosphorylation-dephosphorylation mechanism.  相似文献   

20.
Neurospora Trehalase and Its Structural Gene   总被引:1,自引:0,他引:1       下载免费PDF全文
We have isolated Neurospora trehalaseless mutants and mapped the trehalase structural gene to linkage group I. The structural gene mutations not only affect thermostability and other characteristics of the enzyme but also affect the production of an inhibitor of the wild-type trehalase. The inhibitor appears to be the mutant trehalase. We suggest that the mutant subunits act as inhibitors by entering into the multimeric forms of the enzyme and altering the ability of the normal wild-type subunits to catalyze the cleavage of trehalose.—Wild type trehalase has been purified to near homogeneity, and its characteristics have been studied. It was purified as a tetramer, with each subunit having a molecular weight of 88,000.—We have studied the regulation of trehalase and found the production of trehalase to be glucose repressible. Cells begin to produce trehalase 60 min after being transferred to glucose-free medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号