首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxy side of asparagine residues. Vigna mungo processing enzyme 1, termed VmPE-1, occurs in the cotyledons of germinated seeds of V. mungo, and is possibly involved in the post-translational processing of a vacuolar cysteine endopeptidase, designated SH-EP, which degrades seed storage protein. VmPE-1 also showed a substrate specificity to asparagine residues, and its enzymatic activity was inhibited by NEM but not E-64. In addition, purified VmPE-1 had a potential to process the recombinant SH-EP precursor to its intermediate in vitro. cDNA clones for VmPE-1 and its homologue, named VmPE-1A, were identified and sequenced, and their expressions in the cotyledons of V. mungo seedlings and other organs were investigated. VmPE-1 mRNA and SH-EP mRNA were expressed in germinated seeds at the same stage of germination although the enzymatic activity of VmPE-1 rose prior to that of SH-EP. The level of VmPE-1A mRNA continued increasing as germination proceeded. In roots, stems and leaves of fully grown plants, and in hypocotyls, VmPE-1 and VmPE-1A were little expressed. We discuss possible functions of VmPE-1 and VmPE-1A in the cotyledons of germinated seeds.  相似文献   

2.
SH-EP is the major papain-type proteinase expressed in cotyledons of germinated Vigna mungo seeds. The proteinase possesses a KDEL sequence at the C-terminus although the mature form of SH-EP is localized in vacuoles. It has also been shown that the proform of SH-EP is accumulated at the edge or middle region of the endoplasmic reticulum, and the accumulated proSH-EP is directly transported to vacuoles via the KDEL-tailed cysteine proteinase-accumulating vesicle, KV. In this study, to address the transport machinery of proSH-EP through KV, putative receptor for proSH-EP was isolated from membrane proteins of cotyledons of V. mungo seedlings using a proSH-EP-immobilized column. The deduced amino acid sequence from cDNA to the protein revealed that the putative receptor for proSH-EP is a member of vacuolar sorting receptor, VSR, that is known to be localized in the Golgi-complex and/or clathrin coated vesicle. We carried out subcellular fractionation of cotyledon cells and subsequently conducted SDS-PAGE/immunoblotting and immunocytochemistry with anti-V. mungo VSR (VmVSR) or SH-EP antibody. The results showed that VmVSR is co-localized in the fraction of the gradient in which KV existed.  相似文献   

3.
A vacuolar cysteine proteinase, designated SH-EP, is expressed in the cotyledon of germinated Vigna mungo seeds and is responsible for the degradation of storage proteins. SH-EP is a characteristic vacuolar proteinase possessing a COOH-terminal endoplasmic reticulum (ER) retention sequence, KDEL. In this work, immunocytochemical analysis of the cotyledon cells of germinated V. mungo seeds was performed using seven kinds of antibodies to identify the intracellular transport pathway of SH-EP from ER to protein storage vacuoles. A proform of SH-EP synthesized in ER accumulated at the edge or middle region of ER where the transport vesicle was formed. The vesicle containing a large amount of proSH-EP, termed KV, budded off from ER, bypassed the Golgi complex, and was sorted to protein storage vacuoles. This massive transport of SH-EP via KV was thought to mediate dynamic protein mobilization in the cotyledon cells of germinated seeds. We discuss the possibilities that the KDEL sequence of KDEL-tailed vacuolar cysteine proteinases function as an accumulation signal at ER, and that the mass transport of the proteinases by ER-derived KV-like vesicle is involved in the protein mobilization of plants.  相似文献   

4.
Sulfhydryl-endopeptidase (SH-EP) is a papain-type vacuolar proteinase expressed in cotyledons of germinated Vigna mungo seeds, and the enzyme possesses a C-terminal propeptide containing KDEL tail, an endoplasmic reticulum retention signal for soluble proteins. SH-EP is transported to vacuoles via a KDEL vesicle (KV) through a Golgi complex-independent route. To see the function of the KDEL sequence of SH-EP, wild-type SH-EP and its KDEL deletion mutant (SH-EPDeltaKDEL) were heterologously expressed in Arabidopsis and in cultured tobacco Bright Yellow 2 cells, and their intracellular transport pathways and localizations were analyzed. A combination of the results from analyses for transformed Arabidopsis and tobacco (Nicotiana tabacum) cells indicated that wild-type SH-EP is packed into KV-like vesicles through the KDEL sequence and is transported to vacuoles in the cells of transformants. In contrast, KV was not formed/induced in the cells expressing SH-EPDeltaKDEL, and the mutant protein was mainly secreted. Therefore, the C-terminal KDEL sequence of the KDEL-tailed cysteine proteinase is thought to be involved in the formation of KV, and in the efficient vacuolar transport of the proteins through KV.  相似文献   

5.
The expression of a papain-type proteinase, designated SH-EP, in cotyledons of Vigna mungo seedlings has been shown to require some factors in the embryonic axes. Gibberellin A1 (GA(1)) and GA(20) were identified by GC-MS in embryonic axes of V. mungo seedlings. The level of accumulation of SH-EP in cotyledons of V. mungo seedlings was greatly reduced by treatment of the seeds with uniconazole-P, an inhibitor for GA biosynthesis. The reduced level of accumulation of SH-EP in cotyledons by uniconazole-P was recovered by exogenous application of GA(1) and GA(20) to the seedlings.  相似文献   

6.
SH-EP is a vacuolar cysteine proteinase from germinated seeds of Vigna mungo. The enzyme has a C-terminal propeptide of 1 kDa that contains an endoplasmic reticulum (ER) retention signal, KDEL. The KDEL-tail has been suggested to function to store SH-EP as a transient zymogen in the lumen of the ER, and the C-terminal propeptide was thought to be removed within the ER or immediately after exit from the ER. In the present study, a protease that may be involved in the post-translational processing of the C-terminal propeptide of SH-EP was isolated from the microsomes of cotyledons of V. muno seedlings. cDNA sequence for the protease indicated that the enzyme is a member of the papain superfamily. Immunocytochemistry and subcellular fractionation of cotyledon cells suggested that the protease was localized in both the ER and protein storage vacuoles as enzymatically active mature form. In addition, protein fractionations of the cotyledonary microsome and Sf9 cells expressing the recombinant protease indicated that the enzyme associates with the microsomal membrane on the luminal side. The protease was named membrane-associated cysteine protease, MCP. The possibility that a papain-type enzyme, MCP, exists as mature enzyme in both ER and protein storage vacuoles will be discussed.  相似文献   

7.
Samac D  Storey R 《Plant physiology》1981,68(6):1339-1344
Changes in proteolytic activity (aminopeptidase, carboxypeptidase, endopeptidase) were followed during germination (imbibition through seedling development) in extracts from cotyledons of jojoba seeds (Simmondsia chinensis). After imbibition, the cotyledons contained high levels of sulfhydryl aminopeptidase activity (APA) but low levels of serine carboxypeptidase activity (CPA). CPA increased with germination through the apparent loss of a CPA inhibitor substance in the seed. Curves showing changes in endopeptidase activity (EPA) assayed at pH 4, 5, 6, 7, and 8 during germination were distinctly different. EPA at pH 4, 5, 6, and 7 showed characteristics of sulfhydryl enzymes while activity at pH 8 was probably due to a serine type enzyme. EPA at pH 6 was inhibited early in germination by one or more substances in the seed. Activities at pH 5 and later at pH 6 were the highest of all EPA throughout germination and increases in these activities were associated with a rapid loss of protein from the cotyledons of the developing seedling.  相似文献   

8.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxyl side of asparagine residues, and is possibly involved in the post-translational processing of proproteins. In this report one full-length cDNA, SPAE, was isolated from senescent leaves of sweet potato (Ipomoea batatas (L.) Lam). SPAE contained 1479 nucleotides (492 amino acids) in the open reading frame, and exhibited high amino acid sequence homologies (c. 61-68%) with asparaginyl endopeptidases of Vicia sativa, Phaseolus vulgaris, Canavalia ensiformis, and Vigna mungo. SPAE probably encoded a putative precursor protein. Via cleavage of the N- and C-termini, it produced a mature protein containing 325 amino acids (from the 51st to the 375th amino acid residues), the conserved catalytic residues (the 173rd His and 215th Cys amino acid residues), and the putative N-glycosylation site (the 332nd Asn amino acid residue). Semi-quantitative RT-PCR and western blot hybridization showed that SPAE gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was much less in mature green leaves, stems, and roots. Phylogenic analysis showed that SPAE displayed close association with vacuolar processing enzymes (legumains/asparaginyl endopeptidases), which function via cleavage for proprotein maturation in the protein bodies during seed maturation and germination. In conclusion, sweet potato SPAE is probably a functional, senescence-associated gene and its mRNA and protein levels were significantly enhanced in natural and induced senescent leaves. The possible role and function of SPAE associated with bulk protein degradation and mobilization during leaf senescence were also discussed.  相似文献   

9.
Little or no endopeptidase activity was detected in extracts of dry mature wheat seeds, but when they were allowed to imbibe water in darkness, the activity expressed per seedling increased notably after d 1, reached a maximum on d 3 and then decreased. Two major endopeptidases, named WEP-1 and WEP-2, were present in the 50-70% saturated ammonium sulfate fraction of d-3 seedlings, and could be separated by hydrophobic column chromatography. WEP-1 was further purified and identified as a 31-kDa polypeptide that was immunoreactive to antiserum raised against REP-1, a major rice cysteine endopeptidase. Experiments with proteinase inhibitors revealed that WEP-1 and WEP-2 are cysteine and serine endopeptidases, respectively. The two enzymes differed in substrate specificity, pH dependence, and the ability to digest major wheat seed proteins. Determination of its amino-terminal amino acid sequence indicated the similarity of WEP-1 to other cereal cysteine endopeptidases which are involved in the digestion of seed storage proteins. The expression of WEP-1 in de-embryonated seeds was induced in the presence of gibberellic acid and its effect was eliminated by abscisic acid. In addition to WEP-1 and WEP-2, a legumain-like asparaginyl endopeptidase was identified in the extract of seedlings on hydrophobic chromatography. The asparaginyl endopeptidase may function in the early step of mobilization of wheat storage proteins in germinated seeds.  相似文献   

10.
Families of papain- and legumain-like cysteine proteinases (CPR) were found in Vicia seeds. cDNAs and antibodies were used to follow organ specificity and the developmental course of CPR-specific mRNAs and polypeptides. Four papain-like cysteine proteinases (CPR1, CPR2, proteinase A and CPR4) from vetch seeds (Vicia sativa L.) were analysed. CPR2 and its mRNA were already found in dry embryonic axes. CPR1 was only detected there during early germination. Both CPR1 and CPR2 strongly increased later during germination. In cotyledons, both CPR1 and CPR2 were only observed one to two days later than in the axis. Proteinase A was not found in axes. In cotyledons it could only be detected several days after seeds had germinated. CPR4 mRNA and polypeptide were already present in embryonic axes and cotyledons during seed maturation and decreased in both organs during germination. Purified CPR1, CPR2 and proteinase A exhibited partially different patterns of globulin degradation products in vitro. Although the cDNA-deduced amino acid sequence of the precursor of proteinase A has an N-terminal signal peptide, the enzyme was not found in vacuoles whereas the other papain-like CPRs showed vacuolar localization. Four different legumain-like cysteine proteinases (VsPB2, proteinase B, VnPB1 and VnPB2) of Vicia species were analysed. Proteinase B and VnPB1 mRNAs were detected in cotyledons and seedling organs after seeds had germinated. Proteinase B degraded globulins isolated from mature vetch seeds in vitro. VsPB2 and proteinase B are localized to protein bodies of maturing seeds and seedlings, respectively, of V. sativa. Like VsPB2 from V. sativa, also VnPB2 of V. narbonensis corresponds to vacuolar processing enzymes (VPE). Based on these results different functions in molecular maturation and mobilization of storage proteins could be attributed to the various members of the CPR families.  相似文献   

11.
The development of endopeptidase activity in cotyledons of Vignamungo seedlings was examined after application of exogenousamino acids, sugars and plant hormones. The endopeptidase activityin the cotyledons fell when germinating seeds were allowed toabsorb a solution of amino acids at high concentrations, andit was postulated that this effect might have been caused inpart by osmotic stress and in part by end-product repression.Protein immunoblotting with an antiserum against SH-EP, themajor cysteine endopeptidase occurring in the cotyledons, showedthat sugars and amino acids at high concentrations also delayedthe post-translational processing of SH-EP intermediates. Endopeptidaseactivity equivalent to nearly twice that in controls was observedwhen GA3 was applied at 10 to 100 µM to cotyledons thathad been detached from the embryonic axis. In addition, naphthaleneaceticacid at 1 to 100 µM, kinetin at 1 to 10 µM and jasmonicacid at 1 to 10 µM also increased the activity to a limitedextent. Results of pulse-chase experiments suggested that theeffect of GA1 on the endopeptidase activity in the detachedcotyledons was attributable to suppression of the degradationof the enzyme. Protein immunoblotting revealed the presenceof 34-kOa and 35-kDa intermediates of SH-EP in addition to previouslyreported 36-kDa and 43-kDa intermediates. (Received June 26, 1995; Accepted October 16, 1995)  相似文献   

12.
The NARC 1 gene encodes a novel proteinase K family proteinase. The domain structure of rat Narc 1 resembles that of the subtilisin-like proprotein convertases (SPCs), except that rNarc 1 lacks the canonical P-domain of SPCs, retaining only the RGD motif as part of what might be a cryptically functioning P-domain. Narc 1 undergoes autocatalytic intramolecular processing at the site LVFAQ/, resulting in the cleavage of its prosegment and the generation of an active proteinase with a broad alkaline pH optimum and no apparent calcium requirement for activity. Both primary and secondary structural determinants influence Narc 1 substrate recognition. Our functional characterization of Narc 1 reinforces the inference drawn from the analysis of its predicted structure that this enzyme is most closely related to representatives of the proteinase K family, but that it is also sufficiently different to warrant its possible classification in a separate sub-family.  相似文献   

13.
Aminopeptidases were investigated in protein extracts of dormant and germinated peanut cotyledons by electrophoretic immunochemical techniques. Considerable activity was observed in protein zones that migrated toward the anode after simple electrophoresis. Of the immunogenic proteins in dormant seed, aminopeptidase activity was associated only with the immunocomplex of α1-conarachin, a globular protein in peanuts. The specific aminopeptidase activity of total extracts was marginally higher than that of purified α-conarachin. Specific iso-enzyme(s) adsorption on the antigen-antibody complex of α1-conarachin might be attributed in part, to these phenomena. Reactions of protein extracts from germinated cotyledons with immune sera made against protein in germinated tissues—roots and cotyledons—showed the identical associative interaction. Some of the determinant groups on α1-conarachin in the germ and cotyledon were apparently maintained during early phases of germination.  相似文献   

14.
Proteolytic activities were studied in cotyledons of germinated and mature dry seed and axis of mature dry seed ofVigna unguiculata (L.) Walp. cv. Seridó using the following substrates: hemoglobin (pH 3.5), casein (pH 6.0), LPA (pH 7.0), and BAPA (pH 7.6). During the germination period (six days) examined, the total activities of LPA-ase and BAPA-ase decreased progressively in cotyledons corresponding to protein depletion. Consequently, the specific activities of the above proteases remain practically constant. In the case of caseinase and hemoglobinase, total activities increased in the cotyledons up to the third day of germination. Thereafter there was a decrease in these activities (total) but an increase in specific activities. Higher values than in the cotyledons for all the activities were obtained with the axis of mature dry seed. A 25 to 50 % ammonium sulfate fraction of a buffered extract from mature dry seed was used as source of enzyme for all the substrates used. Sephadex G-100 chromatography of the 25 to 50 % (NH4)2SO4 fraction gave two main peaks which correspond to relative molecular mass of 100 000 and 60 000 and contained all the activities.  相似文献   

15.
A spectrophotometric assay was devised to characterize the asparaginyl (Asn) endopeptidase activity from the endosperm of castor oil seeds. (Ricinus communis L. var. Baker 296). The assay measures the release of p-nitroaniline from the hydrolysis of benzoyl-l-Asn-p-nitroanilide. Assay sensitivity was improved through diazotization of the reaction product with N(]-napthy])-ethylenediamine dihydrochloride: diazotized p-nitroaniline was determined spectrophotometrically at 548 nm (?548= 1.64 × 10?1M?1 cm?2). By using this assay. Asn endopeptidase activity was detected in endosperm extracts of developing, mature and germinating castor seeds. Comparison of the Asn endopeptidase activities of developing and germinating castor endosperms revealed that they: 1) have identical pH-activity profiles with optimal activity occuring at pH 5.4: 2) are heat-labile proteins displaying comparable thermal stability profiles, and 3) are activated and inhibited by dithiothreitol and thiol modifying reagents, respectively. Thus, the Asn endopeptidases of developing and germinating castor seeds are very similar, if not identical, cysteine proteases. The most significant increase in the activity of endosperm Asn endopeptidase occurs during the full coryledon to maturation stage of seed development, this period coincides with the most active phase of reserve protein accumulation by ripening castor oil seeds. Asn endopeptidase activity of fully mature (dry) castor seeds was about 2-fold lower than that of muturation stage ripening castor oil seed. Asn endopeptidase activity showed a slight reduction over the inicial 2-day period following seed imbibition, and then rapidly decreased over the next several days of germination. The results are compatible with the proposal that Asn endopeptidase functions both to process storage preproteins following their import into protein bodies of developing seeds, as well as to participate in the mobilization of storage proteins during the early phase of seed germination.  相似文献   

16.
Proprotein precursors of vacuolar components are transportedfrom endoplasmic reticulum to the dense vesicles, and then targetedto the vacuoles, where they are processed proteolytically totheir mature forms by a vacuolar processing enzyme. Immunoelectronmicroscopy of the maturing endosperm of castor bean (Ricinnscommunis) revealed that the vacuolar processing enzyme is selectivelylocalized in the dense vesicles as well as in the vacuolar matrix.This indicates that the vacuolar processing enzyme is transportedto vacuoles via dense vesicles as does IIS globulin, a majorseed protein. During seed maturation of castor bean, an increasein the activity of the vacuolar processing enzyme in the endospermpreceded increases in amounts of total protein. The enzymaticactivity reached a maximum at the late stage of seed maturationand then decreased during seed germination concomitantly withthe degradation of seed storage proteins. We examined the distributionof the enzyme in different tissues of various plants. The processingenzyme was found in cotyledons of castor bean, pumpkin and soybean,as well as in endosperm, and low-level processing activity wasalso detected in roots, hypocotyls and leaves of castor bean,pumpkin, soybean, mung bean and spinach. These results suggestthat the proprotein-processing machinery is widely distributedin vacuoles of various plant tissues. (Received July 11, 1993; Accepted August 17, 1993)  相似文献   

17.
11S seed storage proteins are synthesized as precursors that are cleaved post-translationally in storage vacuoles by an asparaginyl endopeptidase. To study the specificity of the reaction catalyzed by this asparaginyl endopeptidase, we prepared a series of octapeptides and mutant legumin B and G4 glycinin subunits. These contained amino acid mutations in the region surrounding the cleavage site. The endopeptidase had an absolute specificity for Asn on the N-terminal side of the severed peptide bond but exhibited little specificity for amino acids on the C-terminal side. The ability of unmodified and modified subunits to assemble into hexamers after post-translational modification was evaluated. Cleavage of subunits in trimers is required for hexamer assembly in vitro. Products from a mutant gene encoding a noncleavable prolegumin subunit (LeBDeltaN281) accumulated as trimers in seed of transgenic tobacco, but products from the unmodified prolegumin B gene accumulated as hexamers. Therefore, the asparaginyl endopeptidase is required for hexamer assembly.  相似文献   

18.
19.
Phaseolin, the major seed storage protein of Phaseolus vulgaris L., is degraded in the cotyledons in the first 7–10 d following seed germination. We assayed cotyledon extracts for protease activity by using [3H]phaseolin as a substrate and then fractionated the digestion mixtures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in order to identify the cleavage products. The cotyledons of 4-d-old seedlings contain an endopeptidase which cleaves the polypeptides of [3H]phaseolin (apparent molecular weights=51 000, 48 000, 46 000 and 43 000) into three discrete clusters of proteolytic fragments (M rs=27 000, 25 000 and 23 000). Endopeptidase activity is not detected in the cotyledons until the protein content of these organs starts to decline, shortly after the first day of seedling growth. Endopeptidase activity increases to a maximum level in the cotyledons of 5-d-old seedlings and then declines to a minimum value by day 10. The enzyme was purified 335-fold by ammonium-sulfate precipitation, organomercurial-agarose chromatography, gel filtration and ion-exchange chromatography. The endopeptidase constitutes 0.3% of the protein content in the cotyledons of 4-d-old seedlings. It is a cysteine protease with a single polypeptide chain (M r=30 000). Optimum hydrolysis of [3H]phaseolin occurs at pH 5. The enzyme is irreversibly inactivated at pH values above 7 and at temperatures above 45° C. The endopeptidase attacks only a limited number of peptide bonds in [3H]phaseolin, without causing any appreciable change in the native molecular weight of the storage protein. The endopeptidase is also able to hydrolyze the bean-seed lectin, phytohemagglutinin. Thus, this enzyme may play a general role in degrading cotyledon proteins of P. vulgaris following seed germination.Abbreviations Da dalton - DTT dithiothreitol - M r apparent molecular weight - PAGE polyacrylamide gel electrophoresis - PHA phytohemagglutinin - SDS sodium dodecyl sulfate  相似文献   

20.
Cysteine endopeptidases, SH-EP from Vigna mungo and EP-C1 from Phaseolus vulgaris, act to degrade seed storage protein during seed germination. Using transgenic tobacco plants, expression of SH-EP and promoter activity of the EP-C1 gene were analyzed in transgenic tobacco plants. The promoters of the two genes in tobacco seeds showed germination-specific activation, although post-translational processing of SH-EP and regulatory regions of promoter of the gene for EP-C1 were found to differ between leguminous seeds and transgenic tobacco seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号