首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chlamydomonas reinhardtii and other unicellular green algae have a high apparent affinity for CO2, little O2 inhibition of photosynthesis, and reduced photorespiration. These characteristics result from operation of a CO2-concentrating system. The CO2-concentrating system involves active inorganic carbon transport and is under environmental control. Cells grown at limiting CO2 concentrations have inorganic carbon transport activity, but cells grown at 5% CO2 do not. Four membrane-associated polypeptides (Mr 19, 21, 35, and 36 kilodaltons) have been identified which either appear or increase in abundance during adaptation to limiting CO2 concentrations. The appearance of two of the polypeptides occurs over roughly the same time course as the appearance of the CO2-concentrating system activity in response to CO2 limitation.  相似文献   

2.
3.
4.
A mendelian mutant of the unicellular green alga Chlamydomonas reinhardii has been isolated that is deficient in inorganic carbon transport. This mutant strain, designated pmp-1-16-5K (gene locus pmp-1), was selected on the basis of a requirement of elevated CO2 concentration for photoautrophic growth. Inorganic carbon accumulation in the mutant was considerably reduced in comparison to wild type, and the CO2 response of photosynthesis indicated a reduced affinity for CO2 in the mutant. At air levels of CO2 (0.03-0.04%), O2 inhibited photosynthesis and stimulated the synthesis of photorespiratory intermediates in the mutant but not in wild type. Neither strain was significantly affected by O2 at saturating CO2 concentration. Thus, the primary consequence of inorganic carbon transport deficiency in the mutant was a much lower internal CO2 concentration compared to wild type. From these observations, we conclude that enzyme-mediated transport of inorganic carbon is an essential component of the CO2 concentrating system in C. reinhardii photosynthesis.  相似文献   

5.
A simple model of photosynthetic CO2 assimilation in Chlamydomonas has been developed in order to evaluate whether a CO2-concentrating system could explain the photosynthetic characteristics of this alga (high apparent affinity for CO2, low photorespiration, little O2 inhibition of photosynthesis, and low CO2 compensation concentration). Similarly, the model was developed to evaluate whether the proposed defects in the CO2-concentrating system of two Chlamydomonas mutants were consistent with their observed photosynthetic characteristics. The model treats a Chlamydomonas cell as a single compartment with two carbon inputs: passive diffusion of CO2, and active transport of HCO 3 - . Internal inorganic carbon was considered to have two potential fates: assimilation to fixed carbon via ribulose 1,5-bisphosphate carboxylase-oxygenase or exiting the cell by either passive CO2 diffusion or reversal of HCO 3 - transport. Published values for kinetic parameters were used where possible. The model accurately reproduced the CO2-response curves of photosynthesis for wild-type Chlamydomonas, the two mutants defective in the CO2-concentrating system, and a double mutant constructed by crossing these two mutants. The model also predicts steady-state internal inorganic-carbon concentrations in reasonable agreement with measured values in all four cases. Carbon dioxide compensation concentrations for wild-type Chlamydomonas were accurately predicted by the model and those predicted for the mutants were in qualitative agreement with measured values. The model also allowed calculation of approximate energy costs of the CO2-concentrating system. These calculations indicate that the system may be no more energy-costly than C4 photosynthesis.Abbreviations Chl chlorophyll - RuBPC/O ribulose 1,5-bisphosphate carboxylase-oxygenase - CA carbonic anhydrase  相似文献   

6.
The CO2-concentrating mechanism confers microalgae a versatile and efficient strategy for adapting to a wide range of environmental CO2 concentrations. LCIB, which has been demonstrated as a key player in the eukaryotic algal CO2-concentrating mechanism (CCM), is a novel protein in Chlamydomonas lacking any recognizable domain or motif, and its exact function in the CCM has not been clearly defined. The unique air-dier growth phenotype and photosynthetic characteristics in the LCIB mutants, and re-localization of LCIB between different subcellular locations in response to different levels of CO2, have indicated that the function of LCIB is closely associated with a distinct low CO2 acclimation state. Here, we review physiological and molecular evidence linking LCIB with inorganic carbon accumulation in the CCM and discuss the proposed function of LCIB in several inorganic carbon uptake/accumulation pathways. Several new molecular characteristics of LCIB also are presented.  相似文献   

7.
When grown photoautotrophically at air levels of CO2, Chlamydomonas reinhardii possesses a system involving active transport of inorganic carbon which increases the intracellular CO2 concentration considerably above ambient, thereby stimulating photosynthetic CO2 assimilation. In previous investigations, two mutant strains of this unicellular green alga deficient in some component of this CO2-concentrating system were recovered as strains requiring high levels of CO2 to support photoautotrophic growth. One of the mutants, ca-1-12-1C, is a leaky (nonstringent) CO2-requiring strain deficient in carbonic anhydrase (EC 4.2.1.1) activity, while the other, pmp-1-16-5K, is a stringent CO2-requiring strain deficient in inorganic carbon transport. In the present study a double mutant (ca pmp) was constructed to investigate the physiological and biochemical interaction of the two mutations. The two mutations are unlinked and inherited in a Mendelian fashion. The double mutant was found to have a leaky CO2-requiring phenotype, indicating that the mutation ca-1 overcomes the stringent CO2-requirement conferred by the mutation pmp-1. Several physiological characteristics of the double mutant were very similar to the carbonic-anhydrase-deficient mutant, including high CO2 compensation concentration, photosynthetic CO2 response curve, and deficiency of carbonic-anhydrase activity. However, the labeling pattern of metabolites during photosynthesis in 14CO2 was more like that of the bicarbonatetransport-deficient mutant, and accumulation of internal inorganic carbon was intermediate between that of the two original mutants. These data indicate a previously unsuspected complexity in the Chlamydomonas CO2-concentrating system.  相似文献   

8.
A Chlamydomonas reinhardtii mutant has been isolated that cannot grow photoautotrophically on low CO2 concentrations but can grow on elevated CO2. In a test cross, the high CO2-requirement for growth showed a 2:2 segregation. This mutant, designated CIA-5, had a phenotype similar to previously identified mutants that were defective in some aspect of CO2 accumulation. Unlike previously isolated mutants, CIA-5 did not have detectable levels of the periplasmic carbonic anhydrase, an inducible protein that participates in the acquisition of CO2 by C. reinhardtii. CIA-5 also did not accumulate inorganic carbon to levels higher than could be accounted for by diffusion. This mutant strain did not synthesize any of the four polypeptides preferentially made by wild type C. reinhardtii when switched from an environment containing elevated CO2 levels to an environment low in CO2. It is concluded that this mutant fails to induce the CO2 concentrating system and is incapable of adapting to low CO2 conditions.  相似文献   

9.
The external inorganic carbon pool (CO2 + HCO3) was measured in both high and low CO2-grown cells of Chlamydomonas reinhardtii, using a silicone oil layer centrifugal filtering technique. The average internal pH values were measured for each cell type using [14C]dimethyloxazolidinedione, and the internal inorganic carbon pools were recalculated on a free CO2 basis. These measurements indicated that low CO2-grown cells were able to concentrate CO2 up to 40-fold in relation to the external medium. Low and high CO2-grown cells differed in their photosynthetic affinity for external CO2. These differences could be most readily explained as being due to the relative CO2-concentrating capacity of each cell type. This physiological adaptation appeared to be based on changes in the abilities of the cells actively to accumulate inorganic carbon using an energy-dependent transport system.  相似文献   

10.
High CO(2) Requiring Mutant of Anacystis nidulans R(2)   总被引:11,自引:7,他引:4       下载免费PDF全文
Some physiological characteristics of a mutant (E1) of Anacystis nidulans R2, incapable of growing at air level of CO2, are described. E1 is capable of accumulating inorganic carbon (Ci) internally as efficiently as the wild type (R2). The apparent photosynthetic affinity for Ci in E1, however, is some 1000 times lower than that of R2. The kinetic parameters of ribulose 1,5-bisphosphate carboxylase/oxygenase from E1 are similar to those observed in R2. The mutant appears to be defective in its ability to utilize the intracellular Ci pool for photosynthesis and depends on extracellular supply of Ci in the form of CO2. The very high apparent photosynthetic Km (CO2) of the mutant indicate a large diffusion resistance for CO2. Data obtained here are used to calculate the permeability coefficient for CO2 between the bulk medium and the carboxylation site of cyanobacteria.  相似文献   

11.
The CO2-concentrating mechanism (CCM) was induced in the green unicellular alga Chlorella when cells were transferred from high (5% CO2) to low (0.03%) CO2 concentrations. The induction of the CCM correlated with the formation of a starch sheath specifically around the pyrenoid in the chloroplast. With the aim of clarifying whether the starch sheath was involved in the operation of the CCM, we isolated and physiologically characterized a starchless mutant of Chlorella pyrenoidosa, designated as IAA-36. The mutant strain grew as vigorously as the wild type under high and low CO2 concentrations, continuous light and a 12 h light/12 h dark photoperiod. The CO2 requirement for half-maximal rates of photosynthesis [K0.5(CO2)] decreased from 40 μM to 2–3 μM of CO2 when both wild type and mutant were switched from high to low CO2. The high affinity for inorganic carbon indicates that the IAA-36 mutant is able to induce a fully active CCM. Since the mutant does not have the pyrenoid starch sheath, we conclude that the sheath is not involved in the operation of the CCM in Chlorella cells.  相似文献   

12.
The activity of two photorespiratory enzymes, phosphoglycolate phosphatase (PGPase) and glycolate dehydrogenase (glycolate DH), changes when CO2-enriched wild-type (WT) Chlamydomonas reinhardtii cells are transferred to air levels of CO2. Adaptation to air levels of CO2 by Chlamydomonas involves induction of a CO2-concentrating mechanism (CCM) which increases the internal inorganic carbon concentration and suppresses oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. PGPase in cell extracts shows a transient increase in activity that reaches a maximum 3 to 5 hours after transfer and then declines to the original level within 48 hours. The decline in PGPase activity begins at about the time that physiological evidence indicates the CCM is approaching maximal activity. Glycolate DH activity in 24 hour air-adapted WT cells is double that seen in CO2-enriched cells. Unlike WT, the high-CO2-requiring mutant, cia-5, does not respond to limiting CO2 conditions: it does not induce any known aspects of the CCM and it does not show changes in PGPase or glycolate DH activities. Other known mutants of the CCM show patterns of PGPase and glycolate DH activity after transfer to limiting CO2 which are different from WT and cia-5 but which are consistent with changes in activity being initiated by the same factor that induces the CCM, although secondary regulation must also be involved.  相似文献   

13.
Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism, induced by limiting CO2, which involves active transport and accumulation of inorganic carbon within the cell. Synthesis of several proteins is induced by limiting CO2, but, of those, only periplasmic carbonic anhydrase has an identified function in the system. No proteins involved in active transport have yet been identified, but induced, membrane-associated polypeptides, such as the 36 kilodalton polypeptide focused on in this paper, would seem to be candidates for such involvement. The 36 kilodalton polypeptide was shown to be synthesized de novo upon transfer of cells to limiting CO2. It was purified using SDS-PAGE and used to produce polyclonal antibodies. Antibodies were used to confirm the air-specific nature of the polypeptide, its strict association with membrane fractions, and the time course of its induction. Using the antibodies, a single, 36 kilodalton polypeptide was found to be specifically immunoprecipitated from in vitro translation products of poly(A+) RNA from cells only after exposure to limiting CO2. The absence of translatable mRNA for this polypeptide in CO2-enriched cells indicated that regulation occurs at the level of message abundance. The antibodies were also used to demonstrate the distinction between the limiting-CO2 induced 36 kilodalton polypeptide and the similarly sized, limiting-CO2 induced periplasmic carbonic anhydrase.  相似文献   

14.
Falk S  Palmqvist K 《Plant physiology》1992,100(2):685-691
The photosynthetic light-response curve, the relative amounts of the different photosystem II (PSII) units, and fluorescence quenching were altered in an adaptive manner when CO2-enriched wild-type Chlamydomonas reinhardtii cells were transferred to low levels of CO2. This treatment is known to result in the induction of an energy-dependent CO2-concentrating mechanism (CCM) that increases the internal inorganic carbon concentration and thus the photosynthetic CO2 utilization efficiency. After 3 to 6 h of low inorganic carbon treatment, several changes in the photosynthetic energy-transducing reactions appeared and proceeded for about 12 h. After this time, the fluorescence parameter variable/maximal fluorescence yield and the amounts of both PSIIα and PSIIβ (secondary quinone electron acceptor of PSII-reducing) centers had decreased, whereas the amount of PSIIβ (secondary quinone electron acceptor of PSII-nonreducing) centers had increased. The yield of noncyclic electron transport also decreased during the induction of the CCM, whereas both photochemical and nonphotochemical quenching of PSII fluorescence increased. Concurrent with these changes, the photosynthetic light-utilization efficiency also decreased significantly, largely attributed to a decline in the curvature parameter θ, the convexity of the photosynthetic light-response curve. Thus, it is concluded that the increased CO2 utilization efficiency in algal cells possessing the CCM is maintained at the cost of a reduced light utilization efficiency, most probably due to the reduced energy flow through PSII.  相似文献   

15.
To survive in various conditions of CO2 availability, Chlamydomonas reinhardtii shows adaptive changes, such as induction of a CO2-concentrating mechanism, changes in cell organization, and induction of several genes, including a periplasmic carbonic anhydrase (pCA1) encoded by Cah1. Among a collection of insertionally generated mutants, a mutant has been isolated that showed no pCA1 protein and no Cah1 mRNA. This mutant strain, designated cah1-1, has been confirmed to have a disruption in the Cah1 gene caused by a single Arg7 insert. The most interesting feature of cah1-1 is its lack of any significant growth phenotype. There is no major difference in growth or photosynthesis between the wild type and cah1-1 over a pH range from 5.0 to 9.0 even though this mutant apparently lacks Cah1 expression in air. Although the presence of pCA1 apparently gives some minor benefit at very low CO2 concentrations, the characteristics of this Cah1 null mutant demonstrate that pCA1 is not essential for function of the CO2-concentrating mechanism or for growth of C. reinhardtii at limiting CO2 concentrations.  相似文献   

16.
Evidence of an inorganic carbon concentrating system in a marine macroalga is provided here. Based on an O2 technique, supported by determinations of inorganic carbon concentrations, of experimental media (as well as compensation points) using infrared gas analysis, it was found that Ulva fasciata maintained intracellular inorganic carbon levels of 2.3 to 6.0 millimolar at bulk medium concentrations ranging from 0.02 to 1.5 millimolar. Bicarbonate seemed to be the preferred carbon form taken up at all inorganic carbon levels. It was found that ribulose-1,5-bisphosphate carboxylase/oxygenase from Ulva had a Km(CO2) of 70 micromolar and saturated at about 250 micromolar CO2. Assuming a cytoplasmic pH of 7.2 (as measured for another Ulva species, P Lundberg et al. [1988] Plant Physiol 89: 1380-1387), and given the high activity of internal carbonic anhydrase (S Beer, A Israel [1990] Plant Cell Environ [in press]) and the here measured internal inorganic carbon level, it was concluded that internal CO2 in Ulva could, at ambient external inorganic carbon concentrations, be maintained at a high enough level to saturate ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation. It is suggested that this suppresses photorespiration and optimizes net photosynthetic production in an alga representing a large group of marine plants faced with limiting external CO2 concentrations in nature.  相似文献   

17.
A total of 24 high CO2-requiring-mutants of the cyanobacterium Synechococcus PCC7942 have been isolated and partially characterized. These chemically induced mutants are able to grow at 1% CO2, on agar media, but are incapable of growth at air levels of CO2. All the mutants were able to accumulate inorganic carbon (Ci) to levels similar to or higher than wild type cells, but were apparently unable to generate intracellular CO2. On the basis of the rate of Ci release following a light (5 minutes) → dark transition two extreme phenotypes (fast and slow release mutants) and a number of `intermediate' mutants (normal release) were identified. Compared to wild-type cells, Type I mutants had the following characteristics: fast Ci release, normal internal Ci pool, normal carbonic anhydrase (CA) activity in crude extracts, reduced internal exchange of 18O from 18O-labeled CO2, 1% CO2 requirement for growth in liquid media, normal affinity of carboxylase for CO2, and long, rod-like carboxysomes. Type II mutants had the following characteristics: slow Ci release, increased internal Ci pool, normal CA activity in crude extracts, normal internal 18O exchange, a 3% CO2 requirement for growth in liquid media, high carboxylase activity, normal affinity of carboxylase for CO2, and normal carboxysome structure but increased in numbers per cell. Both mutant phenotypes appear to have genetic lesions that result in an inability to convert intracellular HCO3 to CO2 inside the carboxysome. The features of the type I mutants are consistent with a scenario where carboxysomal CA has been mistargeted to the cytosol. The characteristics of the type II phenotype appear to be most consistent with a scenario where CA activity is totally missing from the cell except for the fact that cell extracts have normal CA activity. Alternatively the type II mutants may have a lesion in their capacity for H+ import during photosynthesis.  相似文献   

18.
A Photorespiratory Mutant of Chlamydomonas reinhardtii   总被引:2,自引:1,他引:1       下载免费PDF全文
A mutant strain of Chlamydomonas reinhardtii, designated 18-7F, has been isolated and characterized. 18-7F requires a high CO2 concentration for photoautrophic growth in spite of the apparent induction of a functional CO2 concentrating mechanism in air-adapted cells. In 2% O2 the photosynthetic characteristics of 18-7F and wild type are similar. In 21% O2, photosynthetic O2 evolution is severely inhibited in the mutant by preillumination in limiting CO2, although the apparent photosynthetic affinity for inorganic carbon is similar in preilluminated cells and in cells incubated in the dark prior to O2 evolution measurements. Net CO2 uptake is also inhibited when the cells are exposed to air (21% O2, 0.035% CO2, balance N2) for longer than a few minutes. [14C]Phosphoglycolate accumulates within 5 minutes of photosynthetic 14CO2 fixation in cells of 18-7F. Phosphoglycolate does not accumulate in wild type. Phosphoglycolate phosphatase activity in extracts from air-adapted cells of 18-7F is 10 to 20% of that in wild-type Chlamydomonas. The activity of phosphoglycolate phosphatase in heterozygous diploids is intermediate between that of homozygous mutant and wild-type diploids. It was concluded that the high-CO2 requiring phenotype in 18-7F results from a phosphoglycolate phosphatase deficiency. Genetic analyses indicated that this deficiency results from a single-gene, nuclear mutation. We have named the locus pgp-1.  相似文献   

19.
Arthrospira species grow well under highly enriched inorganic carbon concentrations, but little is known on the effects of inorganic carbon (Ci) limitation on its physiological performance. When Arthrospira platensis D-0083 was grown in a modified medium without NaHCO3 under ambient air of 380 ppm CO2, its trichomes became disassembled while the growth and photosynthetic rates were severely reduced. Phycocyanin and allophycocyanin contents decreased but the carotenoid content increased under the Ci limitation. Compared with the cells grown in Zarrouk medium, the trichomes grown under the Ci limitation increased their photosynthetic apparent affinity for Ci by about 14 times but photochemical quenching capacity was reduced. It appeared that A. platensis increased its CO2 concentrating mechanism by inducing HCO3 ? transporters and reducing the trichome size which increased filamentous surface to volume ratio.  相似文献   

20.
CO2 uptake and transport in leaf mesophyll cells   总被引:4,自引:3,他引:1  
Abstract The acquisition of inorganic carbon for photosynthetic assimilation by leaf mesophyll cells and chloroplasts is discussed with particular reference to membrane permeation of CO2 and HCO?3. Experimental evidence indicates that at the apoplast pH normally experienced by leaf mesophyll cells (pH 6–7) CO2 is the principal species of inorganic carbon taken up. Uptake of HCO?3 may also occur under certain circumstances (i.e. pH 8.5), but its contribution to the net flux of inorganic carbon is small and HCO?3 uptake does not function as a CO2-concentrating mechanism. Similarly, CO2 rather than HCO?3 appears to be the species of inorganic carbon which permeates the chloroplast envelope. In contrast to many C3 aquatic plants and C4 plants, C3 terrestrial plants lack specialized mechanisms for the acquisition and transport of inorganic carbon from the intercellular environment to the site of photosynthetic carboxylation, but rely upon the diffusive uptake of CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号