首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that epinephrine stimulates leg free fatty acid (FFA) release in men but not in women. The present studies were conducted to determine whether the same is true during exercise. Six men and six women bicycled for 90 min at 45% of peak O(2) consumption, during which time systemic and leg FFA kinetics ([9, 10-(3)H]palmitate) were measured. The catecholamine and hormonal responses to exercise were not different in men and women. The baseline systemic and leg palmitate release was 94 +/- 15 vs. 114 +/- 5 micromol/min and 16 +/- 2 and 20 +/- 3 micromol/min, respectively, in men and women [P = nonsignificant (NS)]. Systemic and leg palmitate release increased (both P < 0.001) to 251 +/- 18 vs. 212 +/- 16 micromol/min and 73 +/- 19 vs. 80 +/- 12 micromol/min in men and women, respectively, during the last 30 min of exercise (P = NS, men vs. women). We conclude that the systemic and leg adipose tissue lipolytic response to exercise is not different in nonobese men and women.  相似文献   

2.
Fuel metabolism in men and women during and after long-duration exercise   总被引:5,自引:0,他引:5  
This study aimed to determine gender-baseddifferences in fuel metabolism in response to long-duration exercise.Fuel oxidation and the metabolic response to exercise were compared inmen (n = 14) and women(n = 13) during 2 h (40% of maximalO2 uptake) of cycling and 2 h ofpostexercise recovery. In addition, subjects completed a separatecontrol day on which no exercise was performed. Fuel oxidation wasmeasured using indirect calorimetry, and blood samples were drawn forthe determination of circulating substrate and hormone levels. Duringexercise, women derived proportionally more of the total energyexpended from fat oxidation (50.9 ± 1.8 and 43.7 ± 2.1% forwomen and men, respectively, P < 0.02), whereas men derived proportionally more energy from carbohydrateoxidation (53.1 ± 2.1 and 45.7 ± 1.8% for men and women,respectively, P < 0.01). Thesegender-based differences were not observed before exercise, afterexercise, or on the control day. Epinephrine(P < 0.007) and norepinephrine(P < 0.0009) levels weresignificantly greater during exercise in men than in women (peakepinephrine concentrations: 208 ± 36 and 121 ± 15 pg/ml in menand women, respectively; peak norepinephrine concentrations: 924 ± 125 and 659 ± 68 pg/ml in men and women, respectively). Ascirculating glycerol levels were not different between the two groups,this suggests that women may be more sensitive to the lipolytic action of the catecholamines. In conclusion, these data support the view thatdifferent priorities are placed on lipid and carbohydrate oxidationduring exercise in men and women and that these gender-based differences extend to the catecholamine response to exercise.

  相似文献   

3.
We investigated the effect of endurance training on whole body substrate, glucose, and glycerol utilization during 90 min of exercise at 60% peak O2 consumption (VO2(peak)) in males and females. Substrate oxidation was determined before and after 7 wk of endurance training on a cycle ergometer, with posttesting performed at the same absolute (ABS, W) and relative (REL, VO2(peak)) intensities. [6,6-2H]glucose and [1,1,2,3,3-2H]glycerol tracers were used to calculate the respective substrate tracee flux. Endurance training resulted in an increase in VO2(peak) for both males and females of 17 and 22%, respectively (P < 0.001). Females demonstrated a lower respiratory exchange ratio (RER) both pretraining and posttraining compared with males during exercise (P < 0.001). Glucose rate of appearance (R(a)) and rate of disappearance (R(d)) were not different between males and females. Glucose metabolic clearance rate (MCR) was lower at 75 and 90 min of exercise for females compared with males (P < 0.05). Glucose R(a) and R(d) were lower during exercise at both ABS and REL posttraining exercise intensities compared with pretraining (P < 0.001). Females had a higher exercise glycerol R(a) and R(d) compared with males both pre- and posttraining (P < 0.001). Glycerol R(a) was not different at either the ABS or REL posttraining exercise intensities compared with pretraining. We concluded that females oxidize proportionately more lipid and less carbohydrate during exercise compared with males both pre- and posttraining, which was cotemporal with a higher glycerol R(a) in females. Furthermore, endurance training resulted in a decrease in glucose flux at both ABS and REL exercise intensities after endurance exercise training.  相似文献   

4.
5.
The purpose of this investigation was to determine whether plasma glucose kinetics and substrate oxidation during exercise are dependent on the phase of the menstrual cycle. Once during the follicular (F) and luteal (L) phases, moderately trained subjects [peak O(2) uptake (V(O(2))) = 48.2 +/- 1.1 ml. min(-1). kg(-1); n = 6] cycled for 25 min at approximately 70% of the V(O(2)) at their respective lactate threshold (70%LT), followed immediately by 25 min at 90%LT. Rates of plasma glucose appearance (R(a)) and disappearance (R(d)) were determined with a primed constant infusion of [6,6-(2)H]glucose, and total carbohydrate (CHO) and fat oxidation were determined with indirect calorimetry. At rest and during exercise at 70%LT, there were no differences in glucose R(a) or R(d) between phases. CHO and fat oxidation were not different between phases at 70%LT. At 90%LT, glucose R(a) (28.8 +/- 4.8 vs. 33.7 +/- 4.5 micromol. min(-1). kg(-1); P < 0.05) and R(d) (28.4 +/- 4.8 vs. 34.0 +/- 4.1 micromol. min(-1). kg(-1); P < 0.05) were lower during the L phase. In addition, at 90%LT, CHO oxidation was lower during the L compared with the F phase (82.0 +/- 12.3 vs. 93.8 +/- 9.7 micromol. min(-1) .kg(-1); P < 0.05). Conversely, total fat oxidation was greater during the L phase at 90%LT (7.46 +/- 1.01 vs. 6.05 +/- 0.89 micromol. min(-1). kg(-1); P < 0.05). Plasma lactate concentration was also lower during the L phase at 90%LT concentrations (2.48 +/- 0.41 vs. 3.08 +/- 0.39 mmol/l; P < 0.05). The lower CHO utilization during the L phase was associated with an elevated resting estradiol (P < 0.05). These results indicate that plasma glucose kinetics and CHO oxidation during moderate-intensity exercise are lower during the L compared with the F phase in women. These differences may have been due to differences in circulating estradiol.  相似文献   

6.
7.
8.
This study assessed muscle fatigue patterns of the elbow flexors in untrained men and women to determine if sex differences exist during acute maximal eccentric exercise. High-intensity eccentric exercise is often used by athletes to elicit gains in muscle strength and size gains. Development of fatigue during this type of exercise can increase risk of injury; therefore, it is important to understand fatigue patterns during eccentric exercise to minimize injury risk exposure while still promoting training effects. While many isometric exercise studies have demonstrated that women show less fatigue, the patterns of fatigue during purely eccentric exercise have not been assessed in men and women. Based on the lack of sex differences in overall strength loss immediately post-eccentric exercise, it was hypothesized that women and men would have similar relative fatigue pattern responses (i.e., change from baseline) during a single bout of maximal eccentric exercise. Forty-six subjects (24 women and 22 men) completed 5 sets of 10 maximal eccentric contractions on an isokinetic dynamometer. Maximal voluntary isometric contraction strength was assessed at baseline and immediately following each exercise set. Maximal eccentric torque and contractile properties (i.e., contraction time, work, half relaxation time, and maximal rate of torque development) were calculated for each contraction. Men and women demonstrated similar relative isometric (32% for men and 39% for women) and eccentric (32% for men and 39% for women) fatigue as well as similar deficits in work done and rates of torque development and relaxation during exercise (p > 0.05). Untrained men and women displayed similar relative responses in all measures of muscle function during a single bout of maximal eccentric exercise of the elbow flexors. Thus, there is no reason to suspect that women may be more vulnerable to fatigue-related injury.  相似文献   

9.
This study evaluates a possible contribution of adipose tissue to the elimination of plasma ammonia (NH(3)) after high-intensity sprint exercise. In 14 healthy men and women, repeated blood samples for plasma NH(3) analyses were obtained from brachial artery and from a subcutaneous abdominal vein before and after three repeated 30-s cycle sprints separated by 20 min of recovery. Biopsies from subcutaneous abdominal adipose tissue were obtained and analyzed for glutamine and glutamate content. After exercise, both arterial and abdominal venous plasma NH(3) concentrations were lower in women than in men (P < 0.01 and P < 0.001, respectively). All postexercise measurements showed sex-independent positive arterio-subcutaneous abdominal venous plasma NH(3) concentration differences (a-v(abd)), indicating a net uptake of NH(3) from blood to adipose tissue. However, the fractional extraction (a-v(abd)/a) of NH(3) was higher in women than in men (P < 0.05). The glutamine-to-glutamate ratio in adipose tissue was increased after the second and third bout of sprint exercise (2.2 +/- 0.7 and 1.6 +/- 0.8, respectively) compared with the value at rest (1.2 +/- 0.6), suggesting a reaction of the extracted NH(3) with glutamate resulting in its conversion to glutamine. Adipose tissue may thus play an important physiological role in eliminating plasma NH(3) and thereby reducing the risk of NH(3) intoxication after high-intensity exercise.  相似文献   

10.
Mervic L 《PloS one》2012,7(3):e32955

Background

This study identified sex differences in progression of cutaneous melanoma.

Methodology/Principal Findings

Of 7,338 patients who were diagnosed as an invasive primary CM without clinically detectable metastases from 1976 to 2008 at the University of Tuebingen in Germany, 1,078 developed subsequent metastases during follow up. The metastatic pathways were defined in these patients and analyzed using the Kaplan-Meier method. Multivariate survival analysis was performed using Cox modeling. In 18.7% of men and 29.2% of women (P<0.001) the first metastasis following diagnosis of primary tumor was locoregional as satellite/in-transit metastasis. The majority of men (54.0%) and women (47.6%, P = 0.035) exhibited direct regional lymph node metastasis. Direct distant metastasis from the stage of the primary tumor was observed in 27.3% of men and 23.2% of women (P = 0.13). Site of first metastasis was the most important prognostic factor of survival after recurrence in multivariate analysis (HR:1.3; 95% CI: 1.0–1.6 for metastasis to the regional lymph nodes vs. satellite/in-transit recurrence, and HR:5.5; 95% CI: 4.2–7.1 for distant metastasis vs. satellite/in-transit recurrence, P<0.001). Median time to distant metastasis was 40.5 months (IQR, 58.75) in women and 33 months (IQR, 44.25) in men (P = 0.002). Five-year survival after distant recurrence probability was 5.2% (95% CI: 1.4–2.5) for men compared with 15.3% (95% CI: 11.1–19.5; P = 0.008) for women.

Conclusions/Significance

Both, the pattern of metastatic spread with more locoregional metastasis in women, and the time course with retracted metastasis in women contributed to the more favorable outcome of women. Furthermore, the total rate of metastasis is increased in men. Interestingly, there is also a much more favorable long term survival of women after development of distant metastasis. It remains a matter of debate and of future research, whether hormonal or immunologic factors may be responsible for these sex differences.  相似文献   

11.
The purpose of this study was to compare the rates of muscle deoxygenation in the exercising muscles during incremental arm cranking and leg cycling exercise in healthy men and women. Fifteen men and 10 women completed arm cranking and leg cycling tests to exhaustion in separate sessions in a counterbalanced order. Cardiorespiratory measurements were monitored using an automated metabolic cart interfaced with an electrocardiogram. Tissue absorbency was recorded continuously at 760 nm and 850 nm during incremental exercise and 6 min of recovery, with a near infrared spectrometer interfaced with a computer. Muscle oxygenation was calculated from the tissue absorbency measurements at 30%, 45%, 60%, 75% and 90% of peak oxygen uptake (V˙O2) during each exercise mode and is expressed as a percentage of the maximal range observed during exercise and recovery (%Mox). Exponential regression analysis indicated significant inverse relationships (P < 0.01) between %Mox and absolute V˙O2 during arm cranking and leg cycling in men (multiple R = −0.96 and −0.99, respectively) and women (R =−0.94 and −0.99, respectively). No significant interaction was observed for the %Mox between the two exercise modes and between the two genders. The rate of muscle deoxygenation per litre of V˙O2 was 31.1% and 26.4% during arm cranking and leg cycling, respectively, in men, and 26.3% and 37.4% respectively, in women. It was concluded that the rate of decline in %Mox for a given increase in V˙O2 between 30% and 90% of the peak V˙O2 was independent of exercise mode and gender. Accepted: 31 March 1998  相似文献   

12.
Gender differences in the changes substrates of carbohydrate and lipid metabolism as well as in adrenaline, noradrenaline, growth hormone, insulin and cortisol were investigated in 24 women and 24 men during exhaustive endurance exercise. Training history and current performance capacity were taken into consideration in the design of the study. Since previous papers present conflicting results the purpose of the present study was to obtain further information regarding possible gender differences in lipid metabolism and its regulation by hormones. Non-endurance-trained women and men each ran 10 km on a treadmill at an intensity of 75% of VO2max; endurance-trained women and men ran 14 and 17 km, respectively, at an intensity of 80% of VO2max. Blood glucose levels in non-endurance-trained women were higher when compared to non-endurance-trained men. This might be explained by increased mobilization of free fatty acids from intramuscular fat depots during energy production in non-specifically trained women. In contrast, no substantial gender differences in endurance-trained persons were seen in lipid metabolism. The changes in substrates of lipid metabolism confirm the higher lipolytic activity and greater utilization of free fatty acids in endurance-trained persons. During endurance exercise, changes in adrenaline, noradrenaline, growth hormone, insulin and cortisol were not substantially affected by the sex of the subjects. This study does not present any conclusive results that endurance-trained persons show gender differences in lipid metabolism and major regulatory hormones.  相似文献   

13.
We describe the isotopic exchange of lactate and pyruvate after arm vein infusion of [3-(13)C]lactate in men during rest and exercise. We tested the hypothesis that working muscle (limb net lactate and pyruvate exchange) is the source of the elevated systemic lactate-to-pyruvate concentration ratio (L/P) during exercise. We also hypothesized that the isotopic equilibration between lactate and pyruvate would decrease in arterial blood as glycolytic flux, as determined by relative exercise intensity, increased. Nine men were studied at rest and during exercise before and after 9 wk of endurance training. Although during exercise arterial pyruvate concentration decreased to below rest values (P < 0.05), pyruvate net release from working muscle was as large as lactate net release under all exercise conditions. Exogenous (arterial) lactate was the predominant origin of pyruvate released from working muscle. With no significant effect of exercise intensity or training, arterial isotopic equilibration [(IE(pyruvate)/IE(lactate)).100%, where IE is isotopic enrichment] decreased significantly (P < 0.05) from 60 +/- 3.1% at rest to an average value of 12 +/- 2.7% during exercise, and there were no changes in femoral venous isotopic equilibration. These data show that 1). the isotopic equilibration between lactate and pyruvate in arterial blood decreases significantly during exercise; 2). working muscle is not solely responsible for the decreased arterial isotopic equilibration or elevated arterial L/P occurring during exercise; 3). working muscle releases similar amounts of lactate and pyruvate, the predominant source of the latter being arterial lactate; 4). pyruvate clearance from blood occurs extensively outside of working muscle; and 5). working muscle also releases alanine, but alanine release is an order of magnitude smaller than lactate or pyruvate release. These results portray the complexity of metabolic integration among diverse tissue beds in vivo.  相似文献   

14.
The effect of carbonic anhydrase inhibition with acetazolamide (Acz) on CO2 output (VCO2) and ventilation (VE) kinetics was examined during moderate- and heavy-intensity exercise. Seven men [24 +/- 1 (SE) yr] performed cycling exercise during control (Con) and Acz (10 mg/kg body wt iv) sessions. Each subject performed step transitions (6 min) in work rate from 0 to 100 W [below ventilatory threshold (VET)]. VE and gas exchange were measured breath by breath. The time constant (tau) was determined for exercise VET by using a three-component model (fit from the start of exercise). VCO2 kinetics were slower in Acz (VET, MRT = 75 +/- 10 s) than Con (VET, MRT = 54 +/- 7 s). During VET kinetics were faster in Acz (MRT = 85 +/- 17 s) than Con (MRT = 106 +/- 16 s). Carbonic anhydrase inhibition slowed VCO2 kinetics during both moderate- and heavy-intensity exercise, demonstrating impaired CO2 elimination in the nonsteady state of exercise. The slowed VE kinetics in Acz during exercise 相似文献   

15.
The aim of the present study was to establish fat oxidation rates over a range of exercise intensities in a large group of healthy men and women. It was hypothesised that exercise intensity is of primary importance to the regulation of fat oxidation and that gender, body composition, physical activity level, and training status are secondary and can explain part of the observed interindividual variation. For this purpose, 300 healthy men and women (157 men and 143 women) performed an incremental exercise test to exhaustion on a treadmill [adapted from a previous protocol (Achten J, Venables MC, and Jeukendrup AE. Metabolism 52: 747-752, 2003)]. Substrate oxidation was determined using indirect calorimetry. For each individual, maximal fat oxidation (MFO) and the intensity at which MFO occurred (Fat(max)) were determined. On average, MFO was 7.8 +/- 0.13 mg.kg fat-free mass (FFM)(-1).min(-1) and occurred at 48.3 +/- 0.9% maximal oxygen uptake (Vo(2 max)), equivalent to 61.5 +/- 0.6% maximal heart rate. MFO (7.4 +/- 0.2 vs. 8.3 +/- 0.2 mg.kg.FFM(-1).min(-1); P < 0.01) and Fat(max) (45 +/- 1 vs. 52 +/- 1% Vo(2 max); P < 0.01) were significantly lower in men compared with women. When corrected for FFM, MFO was predicted by physical activity (self-reported physical activity level), Vo(2 max), and gender (R(2) = 0.12) but not with fat mass. Men compared with women had lower rates of fat oxidation and an earlier shift to using carbohydrate as the dominant fuel. Physical activity, Vo(2 max), and gender explained only 12% of the interindividual variation in MFO during exercise, whereas body fatness was not a predictor. The interindividual variation in fat oxidation remains largely unexplained.  相似文献   

16.
The temporal relationship between the kinetics of phase 2 pulmonary O2 uptake (Vo -->Vo2p) and deoxygenation of the vastus lateralis muscle was examined during moderate-intensity leg-cycling exercise. Young adults (5 men, 6 women; 23 +/- 3 yr; mean +/- SD) performed repeated transitions on 3 separate days from 20 W to a constant work rate corresponding to 80% of lactate threshold. Breath-by-breath Vo2p was measured by mass spectrometer and volume turbine. Deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin and myoglobin were sampled each second by near-infrared spectroscopy (Hamamatsu NIRO-300). Vo2p data were filtered, interpolated to 1 s, and averaged to 5-s bins; HHb data were averaged to 5-s bins. Phase 2 Vo2p data were fit with a monoexponential model. For HHb, a time delay (TDHHb) from exercise onset to an increase in HHb was determined, and thereafter data were fit with a monoexponential model. The time constant for Vo2p (30 +/- 8 s) was slower (P < 0.01) than that for HHb (10 +/- 3 s). The TDHHb before an increase in HHb was 13 +/- 2 s. The possible mechanisms of the TDHHb are discussed with reference to metabolic activation and matching of local muscle O2 delivery and O2 utilization. After this initial TDHHb, the kinetics of local muscle deoxygenation were faster than those of phase 2 Vo2p (and presumably muscle O2 consumption), reflecting increased O2 extraction and a mismatch between local muscle O2 consumption and perfusion.  相似文献   

17.
18.
19.
Multiple factors may contribute to the dyspnea associated with restrictive ventilatory disease (RVD). Simple models that examine specific features of this problem are likely to provide insight into the mechanisms. Previous models of RVD utilizing elastic loads may not represent completely the impact on pulmonary and chest wall receptors derived from breathing at low thoracic volumes. The purpose of this study was to investigate the sensory consequences of breathing at low lung volumes induced by external thoracic restriction in an attempt to further elucidate the etiology of dyspnea in this setting. Ten men were studied, with and without an inelastic corset applied at residual volume (restriction resulted in mean reductions in vital capacity, functional residual capacity, residual volume, and forced expired volume in 1 s of 44, 31, 12.5, and 42%, respectively). During 10-min steady-state exercise tests (at a workload set to achieve approximately 65% maximum heart rate), restriction resulted in significant increases, compared with control, in minute ventilation (61 vs. 49 l/min), respiratory frequency (43 vs. 23 breaths/min), and visual analog scale measurements of respiratory discomfort (65 vs. 20 mm). Alveolar hyperventilation (end-tidal PCO2 = 39 vs. 44 Torr for control) and mild O2 desaturation (arterial blood O2 saturation = 93 vs. 95% for control) occurred. Hypoxemia, atelectasis, increased work and effort of breathing, or a decrease in the volume-related feedback from chest wall and/or lungs could be responsible for the increased dyspnea reported. External thoracic restriction provides a useful model to study mechanisms of dyspnea in RVD.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号