首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K Kubo  H Ide  S S Wallace  Y W Kow 《Biochemistry》1992,31(14):3703-3708
Free radicals produce a wide spectrum of damages; among these are DNA base damages and abasic (AP) sites. Although several methods have been used to detect and quantify AP sites, they either are relatively laborious or require the use of radioactivity. A novel reagent for detecting abasic sites in DNA was prepared by reacting O-(carboxymethyl)hydroxylamine with biotin hydrazide in the presence of carbodiimide. This reagent, called Aldehyde Reactive Probe (ARP), specifically tagged AP sites in DNA with biotin residues. The number of biotin-tagged AP sites was then determined colorimetrically by an ELISA-like assay using avidin/biotin complex conjugated to horseradish peroxidase as the indicator enzyme. With heat/acid-depurinated calf thymus or bacteriophage f1 DNA, ARP detected femtomoles of AP sites in DNA. Using this assay, DNA damages generated in calf thymus, phi X174 RF, and f1 single-stranded DNA, X-irradiated in phosphate buffer, were easily detectable at 10 rad (0.1 Gy). Furthermore, ARP sites were detectable in DNA isolated from heat-inactivated X-irradiated (10 Gy) and methyl methanesulfonate (MMS)-treated (5 microM) Escherichia coli cells. The rate of production of ARP sites was proportional to the X-ray dose as well as to the concentration of MMS. Thus, the sensitivity and simplicity of the ARP assay should provide a potentially powerful method for the quantitation of AP sites or other DNA lesions containing an aldehyde group.  相似文献   

2.
Oxidation of guanine in DNA generates 7,8‐dihydro‐8‐oxoguanine (8‐oxoG), an ubiquitous lesion with mutagenic properties. 8‐oxoG is primarily removed by DNA glycosylases distributed in two families, typified by bacterial Fpg proteins and eukaryotic Ogg1 proteins. Interestingly, plants possess both Fpg and Ogg1 homologs but their relative contributions to 8‐oxoG repair remain uncertain. In this work we used Arabidopsis cell‐free extracts to monitor 8‐oxoG repair in wild‐type and mutant plants. We found that both FPG and OGG1 catalyze excision of 8‐oxoG in Arabidopsis cell extracts by a DNA glycosylase/lyase mechanism, and generate repair intermediates with blocked 3′‐termini. An increase in oxidative damage is detected in both nuclear and mitochondrial DNA from double fpg ogg1 mutants, but not in single mutants, which suggests that a single deficiency in one of these DNA glycosylases may be compensated by the other. We also found that the DNA 3′‐phosphatase ZDP (zinc finger DNA 3′‐phosphoesterase) and the AP(apurinic/apyirmidinic) endonuclease ARP(apurinic endonuclease redox protein) are required in the 8‐oxoG repair pathway to process the 3′‐blocking ends generated by FPG and OGG1. Furthermore, deficiencies in ZDP and/or ARP decrease germination ability after seed deteriorating conditions. Altogether, our results suggest that Arabidopsis cells use both FPG and OGG1 to repair 8‐oxoG in a pathway that requires ZDP and ARP in downstream steps.  相似文献   

3.
Clustered damages are formed in DNA by ionising radiation and radiomimetic anticancer agents and are thought to be biologically severe. 7,8-dihydro-8-oxoguanine (8-oxoG), a major DNA damage resulting from oxidative attack, is highly mutagenic leading to a high level of G·C→T·A transversions if not previously excised by OGG1 DNA glycosylase/AP lyase proteins in eukaryotes. However, 8-oxoG within clustered DNA damage may present a challenge to the repair machinery of the cell. The ability of yeast OGG1 to excise 8-oxoG was determined when another type of damage [dihydrothymine, uracil, 8-oxoG, abasic (AP) site or various types of single-strand breaks (SSBs)] is present on the complementary strand 1, 3 or 5 bases 5′ or 3′ opposite to 8-oxoG. Base damages have little or no influence on the excision of 8-oxoG by yeast OGG1 (yOGG1) whereas an AP site has a strong inhibitory effect. Various types of SSBs, obtained using either oligonucleotides with 3′- and 5′-phosphate termini around a gap or through conversion of an AP site with either endonuclease III or human AP endonuclease 1, strongly inhibit excision of 8-oxoG by yOGG1. Therefore, this large inhibitory effect of an AP site or a SSB may minimise the probability of formation of a double-strand break in the processing of 8-oxoG within clustered damages.  相似文献   

4.
Trapp C  McCullough AK  Epe B 《Mutation research》2007,625(1-2):155-163
Mitochondrial DNA (mtDNA) is assumed to be highly prone to damage by reactive oxygen species (ROS) because of its location in close proximity to the mitochondrial electron transport chain. Accordingly, mitochondrial oxidative DNA damage has been hypothesized to be responsible for various neurological diseases, ageing and cancer. Since 7,8-dihydro-8-oxoguanine (8-oxoG), one of the most frequent oxidative base modifications, is removed from the mitochondrial genome by the glycosylase OGG1, the basal levels of this lesion are expected to be highly elevated in Ogg1−/− mice. To investigate this hypothesis, we have used a mtDNA relaxation assay in combination with various repair enzymes (Fpg, MutY, endonuclease III, endonuclease IV) to determine the average steady-state number of oxidative DNA modifications within intact (supercoiled) mtDNA from the livers of wild-type mice and those deficient in OGG1 and/or the Cockayne syndrome B (CSB) protein for mice aged up to 23 months. The levels of all types of oxidative modifications were found to be less than 12 per million base pairs, and the difference between wild-type and repair-deficient (Ogg1−/−/Csb−/−) mice was not significant. Thus, the increase of 8-oxoG caused by the repair deficiency in intact mtDNA is not much higher than in the nuclear DNA, i.e., not more than a few modifications per million base pairs. Based on these data, it is hypothesized that the load of oxidative base modifications in mtDNA is efficiently reduced during replication even in the absence of excision repair.  相似文献   

5.
Alternative excision repair (AER) is a category of excision repair initiated by a single nick, made by an endonuclease, near the site of DNA damage, and followed by excision of the damaged DNA, repair synthesis, and ligation. The ultraviolet (UV) damage endonuclease in fungi and bacteria introduces a nick immediately 5′ to various types of UV damage and initiates its excision repair that is independent of nucleotide excision repair (NER). Endo IV-type apurinic/apyrimidinic (AP) endonucleases from Escherichia coli and yeast and human Exo III-type AP endonuclease APEX1 introduce a nick directly and immediately 5′ to various types of oxidative base damage besides the AP site, initiating excision repair. Another endonuclease, endonuclease V from bacteria to humans, binds deaminated bases and cleaves the phosphodiester bond located 1 nucleotide 3′ of the base, leading to excision repair. A single-strand break in DNA is one of the most frequent types of DNA damage within cells and is repaired efficiently. AER makes use of such repair capability of single-strand breaks, removes DNA damage, and has an important role in complementing BER and NER.NER and base excision repair (BER) are the major excision repair pathways present in almost all organisms. In NER, dual incisions are introduced, the damaged DNA between the incised sites is then removed, and DNA synthesis fills the single-stranded gap, followed by ligation. In BER, an AP site, formed by depurination or created by a base damage-specific DNA glycosylase, is recognized by an AP endonuclease that introduces a nick immediately 5′ to the AP site, followed by repair synthesis, removal of the AP site, and final ligation. Besides these two fundamental excision repair systems, investigators have found another category of excision repair—AER—an example of which is the excision repair of UV damage, initiated by an endonuclease called UV damage endonuclease (UVDE). UVDE introduces a single nick immediately 5′ to various types of UV lesions as well as other types of base damage, and this nick leads to the removal of the lesions by an AER process designated as UVDE-mediated excision repair (UVER or UVDR). Genetic analysis in Schizosaccharomyces pombe indicates that UVER provides cells with an extremely rapid removal of UV lesions, which is important for cells exposed to UV in their growing phase.Endo IV–type AP endonucleases from Escherichia coli and budding yeast and the Exo III–type human AP endonuclease APEX1 are able to introduce a nick at various types of oxidative base damage and initiate a form of excision repair that has been designated as nucleotide incision repair (NIR). Endonuclease V (ENDOV) from bacteria to humans recognizes deaminated bases, introduces a nick 1 nucleotide 3′ of the base, and leads to excision repair initiated by the nick. These endonucleases introduce a single nick near the DNA-damage site, leaving 3′-OH termini, and initiate repair of both the DNA damage and the nick. The mechanisms of AER may be similar to those of single-strand break (SSB) repair or BER except for the initial nicking process. However, how DNA damage is recognized determines the repair process within the cell. This article discusses the mechanisms and functional roles of AER. We begin with AER of UV damage, because genetic analysis has shown functional differences between this AER and NER in S. pombe.  相似文献   

6.
The full-length CUX1 protein isoform was previously shown to function as an auxiliary factor in base excision repair (BER). Specifically, CUT domains within CUX1 stimulate the enzymatic activities of the OGG1 DNA glycosylase and APE1 endonuclease. Moreover, ectopic expression of CUX1 or CUT domains increased the resistance of cancer cells to treatments that cause oxidative DNA damage and mono-alkylation of bases. Stimulation of OGG1 AP/lyase and APE1 endonuclease activities, however, cannot explain how CUT domains confer resistance to these treatments since these enzymes produce DNA single-strand breaks that are highly toxic to cells. In the present study, we show that CUT domains stimulate the polymerase and deoxyribose phosphate (dRP)-lyase activities of DNA polymerase β to promote BER completion. In agreement with these results, CUX1 knockdown decreases BER completion in cell extracts and causes an increase in the number of abasic sites in genomic DNA following temozolomide treatment. We also show that CUT domains stimulate bypass of intrastrand G-crosslinks by Pol β in vitro, while the resistance of cancer cells to cisplatin treatment is reduced by CUX1 knockdown but restored by ectopic expression of CUT domains. Altogether our results establish CUX1 as an important auxiliary factor that stimulates multiple steps of base excision repair, from the recognition and removal of altered bases to the addition of new nucleotides and removal of 5′-deoxyribose phosphate required for ligation and BER completion. These findings provide a mechanistic explanation for the observed correlation between CUX1 expression and the resistance of cancer cells to genotoxic treatments.  相似文献   

7.
There have been several reports describing elevation of oxidized RNA in ageing or age-related diseases, however RNA oxidation has been assessed solely based on 8-hydroxy-guanosine levels. In this study, Aldehyde Reactive Probe (ARP), which was originally developed to detect DNA abasic sites, was used to assess RNA oxidation. It was found that ARP reacted with depurinated tRNA(Phe) or chemically synthesized RNA containing abasic sites quantitatively to as little as 10 fmoles, indicating that abasic RNA is recognized by ARP. RNA oxidized by Fenton-type reactions, γ-irradiation or peroxynitrite increased ARP reactivity dose-dependently, indicating that ARP is capable of monitoring oxidized RNA mediated by reactive oxygen species or reactive nitrogen species. Furthermore, oxidative stress increased levels of ARP reactive RNA in cultured cells. These results indicate the versatility of the assay method for biologically relevant oxidation of RNA. Thus, this study developed a sensitive assay for analysis of oxidized RNA.  相似文献   

8.
DNA repair mechanisms guarantee the maintenance of genome integrity, which is critical for cell viability and proliferation in all organisms. As part of the cellular defenses to DNA damage, apurinic/apyrimidinic (AP) endonucleases repair the abasic sites produced by spontaneous hydrolysis, oxidative or alkylation base damage and during base excision repair (BER). Trypanosoma brucei, the protozoan pathogen responsible of human sleeping sickness, has a class II AP endonuclease (TBAPE1) with a high degree of homology to human APE1 and bacterial exonuclease III. The purified recombinant enzyme cleaves AP sites and removes 3'-phosphoglycolate groups from 3'-ends. To study its cellular function, we have established TBAPE1-deficient cell lines derived from bloodstream stage trypanosomes, thus confirming that the AP endonuclease is not essential for viability in this cell type under in vitro culture conditions. The role of TBAPE1 in the removal of AP sites is supported by the inverse correlation between the level of AP endonuclease in the cell and the number of endogenously generated abasic sites in its genomic DNA. Furthermore, depletion of TBAPE1 renders cells hypersensitive to AP site and strand break-inducing agents such as methotrexate and phleomycin respectively but not to alkylating agents. Finally, the increased susceptibility that TBAPE1-depleted cells show to nitric oxide suggests an essential role for this DNA repair enzyme in protection against the immune defenses of the mammalian host.  相似文献   

9.
Human 8-oxoguanine-DNA glycosylase (OGG1) is the main human base excision protein that removes a mutagenic lesion 8-oxoguanine (8-oxoG) from DNA. Since OGG1 has DNA glycosylase and weak abasic site (AP) lyase activities and is characterized by slow product release, turnover of the enzyme acting alone is low. Recently it was shown that human AP endonuclease (APE1) enhances the activity of OGG1. This enhancement was proposed to be passive, resulting from APE1 binding to or cleavage of AP sites after OGG1 dissociation. Here we present evidence that APE1 could actively displace OGG1 from its product, directly increasing the turnover of OGG1. We have observed that APE1 forms an electrophoretically detectable complex with OGG1 cross-linked to DNA by sodium borohydride. Using oligonucleotide substrates with a single 8-oxoG residue located in their 5'-terminal, central or 3'-terminal part, we have demonstrated that OGG1 activity does not increase only for the first of these three substrates, indicating that APE1 interacts with the DNA stretch 5' to the bound OGG1 molecule. In kinetic experiments, APE1 enhanced the product release constant but not the rate constant of base excision by OGG1. Moreover, OGG1 bound to a tetrahydrofuran analog of an abasic site stimulated the activity of APE1 on this substrate. Using a concatemeric DNA substrate, we have shown that APE1 likely displaces OGG1 in a processive mode, with OGG1 remaining on DNA but sliding away in search for a new lesion. Altogether, our data support a model in which APE1 specifically recognizes an OGG1/DNA complex, distorts a stretch of DNA 5' to the OGG1 molecule, and actively displaces the glycosylase from the lesion.  相似文献   

10.
Human 8-oxoguanine-DNA glycosylase OGG1 is an enzyme that removes abundant oxidative lesion 8-oxoguanine (8-oxoG) from DNA. Excision of 8-oxoG by OGG1 is inhibited by the abasic DNA reaction product and is stimulated by AP endonuclease APEX1. Besides 8-oxoG, OGG1 shows activity towards several other base lesions. Here we report that APEX1 efficiently stimulates OGG1 on good substrates (8-oxoadenine, 8-oxoinosine, or 6-methoxy-8-oxoguanine opposite to cytosine) but the stimulation is low or absent with poor OGG1 substrates (8-oxoadenine or 8-oxoinosine opposite to thymine; 8-oxoG or 8-aminoguanine opposite to adenine; 8-oxonebularine, 8-metoxyguanine, inosine or guanine opposite to cytosine). APEX1 significantly improves the ability of OGG1 to excise 8-aminoguanine from its naturally occurring pair with cytosine, making it possible that OGG1 repairs this lesion. Overall, APEX1 serves to improve specificity of OGG1 for its biologically relevant substrates.  相似文献   

11.
《Free radical research》2013,47(2):237-247
Abstract

There have been several reports describing elevation of oxidized RNA in ageing or age-related diseases, however RNA oxidation has been assessed solely based on 8-hydroxy-guanosine levels. In this study, Aldehyde Reactive Probe (ARP), which was originally developed to detect DNA abasic sites, was used to assess RNA oxidation. It was found that ARP reacted with depurinated tRNAPhe or chemically synthesized RNA containing abasic sites quantitatively to as little as 10 fmoles, indicating that abasic RNA is recognized by ARP. RNA oxidized by Fenton-type reactions, γ-irradiation or peroxynitrite increased ARP reactivity dose-dependently, indicating that ARP is capable of monitoring oxidized RNA mediated by reactive oxygen species or reactive nitrogen species. Furthermore, oxidative stress increased levels of ARP reactive RNA in cultured cells. These results indicate the versatility of the assay method for biologically relevant oxidation of RNA. Thus, this study developed a sensitive assay for analysis of oxidized RNA.  相似文献   

12.
Dyshomeostasis of transition metals iron and copper as well as accumulation of oxidative DNA damage have been implicated in multitude of human neurodegenerative diseases, including Alzheimer disease and Parkinson disease. These metals oxidize DNA bases by generating reactive oxygen species. Most oxidized bases in mammalian genomes are repaired via the base excision repair pathway, initiated with one of four major DNA glycosylases: NTH1 or OGG1 (of the Nth family) or NEIL1 or NEIL2 (of the Nei family). Here we show that Fe(II/III) and Cu(II) at physiological levels bind to NEIL1 and NEIL2 to alter their secondary structure and strongly inhibit repair of mutagenic 5-hydroxyuracil, a common cytosine oxidation product, both in vitro and in neuroblastoma (SH-SY5Y) cell extract by affecting the base excision and AP lyase activities of NEILs. The specificity of iron/copper inhibition of NEILs is indicated by a lack of similar inhibition of OGG1, which also indicated that the inhibition is due to metal binding to the enzymes and not DNA. Fluorescence and surface plasmon resonance studies show submicromolar binding of copper/iron to NEILs but not OGG1. Furthermore, Fe(II) inhibits the interaction of NEIL1 with downstream base excision repair proteins DNA polymerase β and flap endonuclease-1 by 4–6-fold. These results indicate that iron/copper overload in the neurodegenerative diseases could act as a double-edged sword by both increasing oxidative genome damage and preventing their repair. Interestingly, specific chelators, including the natural chemopreventive compound curcumin, reverse the inhibition of NEILs both in vitro and in cells, suggesting their therapeutic potential.  相似文献   

13.
Apurinic/apyrimidinic (AP) endonucleases are important DNA repair enzymes involved in two overlapping pathways: DNA glycosylase-initiated base excision (BER) and AP endonuclease-initiated nucleotide incision repair (NIR). In the BER pathway, AP endonucleases cleave DNA at AP sites and 3'-blocking moieties generated by DNA glycosylases, whereas in NIR, the same AP endonucleases incise DNA 5' to a wide variety of oxidized bases. The flowering plant Arabidopsis thaliana contains three genes encoding homologues of major human AP endonuclease 1 (APE1): Arp, Ape1L and Ape2. It has been shown that all three proteins contain AP site cleavage and 3'-repair phosphodiesterase activities; however, it was not known whether the plant AP endonucleases contain the NIR activity. Here, we report that ARP proteins from Arabidopsis and common wheat (Triticum aestivum) contain NIR and 3'  5' exonuclease activities in addition to their AP endonuclease and 3'-repair phosphodiesterase functions. The steady-state kinetic parameters of reactions indicate that Arabidopsis ARP cleaves oligonucleotide duplexes containing α-anomeric 2'-deoxyadenosine (αdA) and 5,6-dihydrouridine (DHU) with efficiencies (kcat/KM = 134 and 7.3 μM−1·min−1, respectively) comparable to those of the human counterpart. However, the ARP-catalyzed 3'-repair phosphodiesterase and 3'  5' exonuclease activities (kcat/KM = 314 and 34 μM−1·min−1, respectively) were about 10-fold less efficient as compared to those of APE1. Interestingly, homozygous A. thaliana arp–/– mutant exhibited high sensitivity to methyl methanesulfonate and tert-butyl hydroperoxide, but not to H2O2, suggesting that ARP is a major plant AP endonuclease that removes abasic sites and specific types of oxidative DNA base damage. Taken together, these data establish the presence of the NIR pathway in plants and suggest its possible role in the repair of DNA damage generated by oxidative stress.  相似文献   

14.
Mechanism of action of Escherichia coli endonuclease III   总被引:12,自引:0,他引:12  
Y W Kow  S S Wallace 《Biochemistry》1987,26(25):8200-8206
Endonuclease III isolated from Escherichia coli has been shown to have both N-glycosylase and apurinic/apyrimidinic (AP) endonuclease activities. A nicking assay was used to show that the enzyme exhibited a preference for form I DNA when DNA containing thymine glycol was used as a substrate. This preference was reduced or eliminated either when the DNA was relaxed or when the type of damage was altered to urea residues or AP sites. The combined N-glycosylase/AP endonuclease activity was at least 10-fold higher than the AP endonuclease activity alone when urea-containing DNA was used as a substrate as compared to AP DNA. When DNA containing thymine glycol was used as a substrate, the combined N-glycosylase/AP endonuclease activity was about 2-fold higher than the AP endonuclease activity. Yet, when DNA containing thymine glycol or urea was used as substrate, no apurinic sites remained. Furthermore, magnesium selectively inhibited endonuclease III activity when AP DNA was used as a substrate but had no effect when DNA containing either urea or thymine glycol was used as substrate. These data suggest that both the N-glycosylase and AP endonuclease activities of endonuclease III reside on the same molecule or are in very tight association and that these activities act in concert, with the N-glycosylase reaction preceding the AP endonuclease reaction.  相似文献   

15.
Oxidative DNA damage caused by intracellular reactive oxygen species (ROS) is widely considered to be important in the pathology of a range of human diseases including cancer as well as in the aging process. A frequently occurring mutagenic base lesion produced by ROS is 8-oxo deoxyguanine (8-oxo dG) and the major enzyme for repair of 8-oxo dG is 8-oxoguanine-DNA glycosylase 1 (OGG1). There is now substantial evidence from bulk biochemical studies that a common human polymorphic variant of OGG1 (Ser326Cys) is repair deficient, and this has been linked to individual risk of pathologies related to oxidative stress. In the current study, we have used the technique of multiphoton microscopy to induce highly localized oxidative DNA damage in discrete regions of the nucleus of live cells. Cells transfected with GFP-tagged OGG1 proteins demonstrated rapid (<2 min) accumulation of OGG1 at sites of laser-induced damage as indicated by accumulation of GFP-fluorescence. This was followed by repair as evidenced by loss of the localized fluorescence over time. Quantification of the rate of repair confirmed that the Cys326 variant of OGG1 is repair deficient and that the initial repair rate of damage by Cys326 OGG1 was 3 to 4 fold slower than that observed for Ser326 OGG1. These values are in good agreement with kinetic data comparing the Ser326 and Cys326 proteins obtained by biochemical studies.  相似文献   

16.
Abstract

Detrimental effects of ionizing radiation (IR) are correlated to the varying efficiency of IR to induce complex DNA damage. A double strand break (DSB) can be considered the simpler form of complex DNA damage. These types of damage can consist of DSBs, single strand breaks (SSBs) and/or non-DSB lesions such as base damages and apurinic/apyrimidinic (AP; abasic) sites in different combinations. Enthralling theoretical (Monte Carlo simulations) and experimental evidence suggests an increase in the complexity of DNA damage and therefore repair resistance with linear energy transfer (LET). In this study, we have measured the induction and processing of DSB and non-DSB oxidative clusters using adaptations of immunofluorescence. Specifically, we applied foci colocalization approaches as the most current methodologies for the in situ detection of clustered DNA lesions in a variety of human normal (FEP18-11-T1) and cancerous cell lines of varying repair efficiency (MCF7, HepG2, A549, MO59K/J) and radiation qualities of increasing LET, that is γ-, X-rays 0.3–1?keV/μm, α-particles 116?keV/μm and 36Ar ions 270?keV/μm. Using γ-H2AX or 53BP1 foci staining as DSB probes, we calculated a DSB apparent rate of 5–16 DSBs/cell/Gy decreasing with LET. A similar trend was measured for non-DSB oxidized base lesions detected using antibodies against the human repair enzymes 8-oxoguanine-DNA glycosylase (OGG1) or AP endonuclease (APE1), that is damage foci as probes for oxidized purines or abasic sites, respectively. In addition, using colocalization parameters previously introduced by our groups, we detected an increasing clustering of damage for DSBs and non-DSBs. We also make correlations of damage complexity with the repair efficiency of each cell line and we discuss the biological importance of these new findings with regard to the severity of IR due to the complex nature of its DNA damage.  相似文献   

17.
18.
Multiply damaged sites (MDSs) consist of two or more damages within 20 base pairs (bps) and are introduced into DNA by ionizing radiation. Using a plasmid assay, we previously demonstrated that repair in Escherichia coli generated a double strand break (DSB) from two closely opposed uracils when uracil DNA glycosylase initiated repair. To identify the enzymes that converted the resulting apurinic/apyrimidinic (AP) sites to DSBs, repair was examined in bacteria deficient in AP site cleavage. Since exonuclease III (xth) and endonuclease IV (nfo) mutant bacteria were able to introduce DSBs at the MDSs, we generated unique bacterial mutants deficient in UvrA, Xth and Nfo. However, the additional disruption of nucleotide excision repair (NER) did not prevent DSB formation. xth- nfo- nfi- bacteria also converted the MDSs to DSBs, ruling out endonuclease V as the candidate AP endonuclease. By using MDSs containing tetrahydrofuran (an AP site analog), it was determined that even in the absence of Xth, Nfo, NER and AP lyase cleavage, DSBs were formed from closely opposed AP sites. This finding implies that there is an unknown enzyme/repair pathway for MDSs, and multiple underlying repair systems in cells that can process closely opposed DNA damage into lethal lesions following exposure to ionizing radiation.  相似文献   

19.
Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.  相似文献   

20.
8-Oxoguanine-DNA glycosylase 1 (OGG1), with intrinsic AP lyase activity, is the major enzyme for repairing 7,8-dihydro-8-oxoguanine (8-oxoG), a critical mutagenic DNA lesion induced by reactive oxygen species. Human OGG1 excised the damaged base from an 8-oxoG·C-containing duplex oligo with a very low apparent kcat of 0.1 min–1 at 37°C and cleaved abasic (AP) sites at half the rate, thus leaving abasic sites as the major product. Excision of 8-oxoG by OGG1 alone did not follow Michaelis–Menten kinetics. However, in the presence of a comparable amount of human AP endonuclease (APE1) the specific activity of OGG1 was increased ~5-fold and MichaelisMenten kinetics were observed. Inactive APE1, at a higher molar ratio, and a bacterial APE (Nfo) similarly enhanced OGG1 activity. The affinity of OGG1 for its product AP·C pair (Kd ~ 2.8 nM) was substantially higher than for its substrate 8-oxoG·C pair (Kd ~ 23.4 nM) and the affinity for its final β-elimination product was much lower (Kd ~ 233 nM). These data, as well as single burst kinetics studies, indicate that the enzyme remains tightly bound to its AP product following base excision and that APE1 prevents its reassociation with its product, thus enhancing OGG1 turnover. These results suggest coordinated functions of OGG1 and APE1, and possibly other enzymes, in the DNA base excision repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号