首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Though gallotannin was known to have anti-oxidant and antitumor activity, the underlying antitumor mechanism of gallotannin still remains unclear. Thus, in the present study, antitumor mechanism of gallotannin was elucidated in hepatocellular carcinoma cells. Gallotannin significantly exerted cytotoxicity against Hep G2 and Chang hepatocellular carcinoma cells with the accumulation of the sub-G1 population and increase of terminal deoxynucleotidyltransferasedUTP nick end labeling (TUNEL) positive cells as an apoptotic feature. Also, gallotannin attenuated the expression of pro-caspase9, pro-caspase3, Bcl2 and integrin β1 and cleaved poly(ADP)-ribose polymerase (PARP) in Hep G2 and Chang cancer cells. Furthermore, gallotannin suppressed cell repair motility by wound healing assay and also inhibited cell adhesion in Hep G2 cells. Of note, gallotannin attenuated the expression of epithelial cadherin (E-cadherin) to form cell-cell adhesion from the early stage, and also beta-catenin at late phase in Hep G2 cells. Consistently, Immunofluorescence assay showed that E-cadherin or β-catenin expression was suppressed in a time dependent manner by gallotannin. Furthermore, silencing of E-cadherin by siRNA transfection method enhanced PAPR cleavage, caspase 3 activation and sub G1 population and attenuated the cell adhesion induced by gallotannin in Hep G2 cells. Overall, our findings demonstrate that the disruption of cell adhesion junction by suppression of E-cadherin mediates gallotannin enhanced apoptosis in Hep G2 liver cancer cells.  相似文献   

2.
This study compared six commercially available reagents (Arrest-In, ExpressFect, FuGENE HD, jetPEI, Lipofectamine 2000, and SuperFect) for gene transfection. We examined the efficiency and cytotoxicity using nine different cell lines (MC3T3-E1 mouse preosteoblasts, PT-30 human epithelial precancer cells, C3H10T1/2 mouse stem cells, MCF-7 human breast cancer cells, HeLa human cervical cancer, C2C12 mouse myoblasts, Hep G2 human hepatocellular carcinoma, 4T1 mouse mammary carcinoma, and HCT116 human colorectal carcinoma), and primary cells (HEKn human epidermal keratinocytes) with two different plasmid DNAs encoding luciferase or β-galactosidase in the presence or absence of serum. Maximal transfection efficiency in MC3T3-E1, C3H10T1/2, HeLa, C2C12, Hep G2, and HCT116 was seen using FuGENE HD, in PT-30, 4T1, and HEKn was seen using Arrest-In, and in MCF-7 was seen using jetPEI. Determination of cytotoxicity showed that the largest amount of viable cells was found after transfection with jetPEI and ExpressFect. These results suggest that FuGENE HD is the most preferred transfection reagent for many cell lines, followed by Arrest-In and jetPEI. These results may be useful for improving nonviral gene and cell therapy applications.  相似文献   

3.
4.
This study aimed to evaluate the correlation of integrin alpha 7 (ITGA7) with clinical outcomes and its effect on cell activities as well as stemness in hepatocellular carcinoma (HCC). HCC tumor tissues and paired adjacent tissues from 90 HCC patients were obtained and ITGA7 expression was detected using immunohistochemistry assay. Cellular experiments were conducted to examine the effect of ITGA7 on cell activities, astemness via ITGA7 ShRNA transfection, and compensation experiments were further performed to test whether ITGA7 functioned via regulating PTK2-PI3K-AKT signaling pathway. ITGA7 was overexpressed in tumor tissues compared with paired adjacent tissues and its high expression was correlated with larger tumor size, vein invasion and advanced Barcelona Clinic Liver Cancer stage, and it also independently predicted worse overall survival in HCC patients. In cellular experiments, ITGA7 was upregulated in SMMC-7721, Hep G2, HuH-7 and BEL-7404 cell lines compared with normal human liver cells HL-7702. ITGA7 knockdown suppressed cell proliferation but promoted apoptosis, and it also downregulated CSCs markers (CD44, CD133 and OCT-4) as well as PTK2, PI3K and AKT expressions in SMMC-7721 and Hep G2 cell lines. ITGA7 overexpression promoted cell proliferation but inhibited apoptosis, and it also upregulated CSCs markers in HL-7702 cells. Further compensation experiments verified that ITGA7 regulated cell proliferation, apoptosis and CSCs markers via PTK2-PI3K-Akt signaling pathway. ITGA7 negatively associates with clinical outcomes in HCC patients, and it regulates cell proliferation, apoptosis and CSCs markers via PTK2-PI3K-Akt signaling pathway.  相似文献   

5.
Aflatoxin B1 (AFB1) is a potent carcinogen that can induce hepatocellular carcinoma. AFB1-8,9-exo-epoxide, one of AFB1 metabolites, acts as a mutagen to react with DNA and induce gene mutations, including the tumor suppressor p53. In addition, AFB1 reportedly stimulates IGF receptor activation. Aberrant activation of IGF-I receptor (IGF-IR) signaling is tightly associated with various types of human tumors. In the current study, we investigated the effects of AFB1 on key elements in IGF-IR signaling pathway, and the effects of AFB1 on hepatoma cell migration. The results demonstrated that AFB1 induced IGF-IR, Akt, and Erk1/2 phosphorylation in hepatoma cell lines HepG2 and SMMC-7721, and an immortalized human liver cell line Chang liver. AFB1 also down-regulated insulin receptor substrate (IRS) 1 but paradoxically up-regulated IRS2 through preventing proteasomal degradation. Treatment of hepatoma cells and Chang liver cells with IGF-IR inhibitor abrogated AFB1-induced Akt and Erk1/2 phosphorylation. In addition, IRS2 knockdown suppressed AFB1-induced Akt and Erk1/2 phosphorylation. Finally, AFB1 stimulated hepatoma cell migration. IGF-IR inhibitor or IRS2 knockdown suppressed AFB1-induced hepatoma cell migration. These data demonstrate that AFB1 stimulates hepatoma cell migration through IGF-IR/IRS2 axis.  相似文献   

6.
7.
Cancer cells are characterized by either an increased ability to proliferate or a diminished capacity to undergo programmed cell death. PTEN is instrumental in regulating the balance between growth and death in several cell types and has been described as a tumor suppressor. The chromosome arm on which PTEN is located is deleted in a subset of human osteosarcoma tumors. Therefore, we predicted that the loss of PTEN expression was contributing to increased Akt activation and the subsequent growth and survival of osteosarcoma tumor cells. Immunoblot analyses of several human osteosarcoma cell lines and normal osteoblasts revealed relatively abundant levels of PTEN. Furthermore, stimulation of cell growth or induction of apoptosis in osteosarcoma cells failed to affect PTEN expression or activity. Therefore, routine regulation of osteosarcoma cell growth and survival appears to be independent of changes in PTEN. Subsequently, the activation of a downstream target of PTEN activity, the survival factor Akt, was analyzed. Inappropriate activation of Akt could bypass the negative regulation by PTEN. Analyses of Akt expression in several osteosarcoma cell lines and normal osteoblasts revealed uniformly low basal levels of phosphorylated Akt. The levels of phosphorylated Akt did not increase following growth stimulation. In addition, osteosarcoma cell growth was unaffected by inhibitors of phosphatidylinositol-3 kinase, an upstream activator of the Akt signaling pathway. These data further suggest that the Akt pathway is not the predominant signaling cascade required for osteoblastic growth. However, inhibition of PTEN activity resulted in increased levels of Akt phosphorylation and enhanced cell proliferation. These data suggest that while abundant levels of PTEN normally maintain Akt in an inactive form in osteoblastic cells, the Akt signaling pathway is intact and functional.  相似文献   

8.
目的:构建pcDNA3.1-Canstatin-3Flag载体并稳定转染肝癌HepG2细胞,检测canstatin在mRNA水平的表达。方法:胎盘中提取总RNA,RT-PCR法获得canstatinDNA,克隆至pcDNA3.1(-)载体中,并测序,重组质粒pcDNA3.1-Canstatin-3Flag转染肝癌HepG2细胞,G418筛选出稳定转染细胞,RT-PCR检测canstatin mRNA表达。结果:1.成功构建出pcDNA3.1-Canstatin-3Flag重组质粒;2.获得稳定转染pcDNA3.1-Canstatin-3Flag的肝癌HepG2细胞;3.发现转染后的肝癌HepG2细胞canstatin在mRNA水平比未转染细胞有明显的增强。结论:获得了稳定转染pcDNA3.1-Canstatin-3Flag的肝癌HepG2细胞,为后期canstatin在肝癌中的研究提供了支持。  相似文献   

9.
组织因子(Tissue Factor,TF)是机体外源性凝血途径的启动因子,发挥生理性止血的重要作用.近来研究表明,TF除凝血功能外尚与多种恶性肿瘤的血管生成,侵袭转移及预后密切相关.为了探讨TF对人类肝癌细胞的影响,将成功构建带有正义/反义TF cDNA的真核细胞表达质粒pcDNA3.1-TF(+)/(-)转染人肝癌细胞系HepG2,经药物筛选后获得稳定细胞克隆;应用RT-PCR和Western blot检测内源性TF mRNA及蛋白质表达水平的变化;通过体外侵袭实验进一步分析对细胞侵袭能力所造成的影响.结果显示,转染pcDNA3.1-TF(+)质粒的细胞TF表达水平明显升高,相应的其侵袭能力明显增强,而转染pcDNA3.1-TF(-)质粒的细胞TF表达水平,及体外侵袭能力显著下降.研究结果表明,TF可以增强人类肝癌细胞体外侵袭和转移能力,与肝癌的进展相关,可作为原发性肝癌治疗的一个新靶点进行研究.  相似文献   

10.
11.
The Phosphatase of Regenerating Liver (PRL) proteins promote cell signaling and are oncogenic when overexpressed. However, our understanding of PRL function came primarily from studies with cultured cell lines aberrantly or ectopically expressing PRLs. To define the physiological roles of the PRLs, we generated PRL2 knock-out mice to study the effects of PRL deletion in a genetically controlled, organismal model. PRL2-deficient male mice exhibit testicular hypotrophy and impaired spermatogenesis, leading to decreased reproductive capacity. Mechanistically, PRL2 deficiency results in elevated PTEN level in the testis, which attenuates the Kit-PI3K-Akt pathway, resulting in increased germ cell apoptosis. Conversely, increased PRL2 expression in GC-1 cells reduces PTEN level and promotes Akt activation. Our analyses of PRL2-deficient animals suggest that PRL2 is required for spermatogenesis during testis development. The study also reveals that PRL2 promotes Kit-mediated PI3K/Akt signaling by reducing the level of PTEN that normally antagonizes the pathway. Given the strong cancer susceptibility to subtle variations in PTEN level, the ability of PRL2 to repress PTEN expression qualifies it as an oncogene and a novel target for developing anti-cancer agents.  相似文献   

12.
Arctigenin (ARG) has been previously reported to exert high biological activities including anti-inflammatory, antiviral and anticancer. In this study, the anti-tumor mechanism of ARG towards human hepatocellular carcinoma (HCC) was firstly investigated. We demonstrated that ARG could induce apoptosis in Hep G2 and SMMC7721 cells but not in normal hepatic cells, and its apoptotic effect on Hep G2 was stronger than that on SMMC7721. Furthermore, the following study showed that ARG treatment led to a loss in the mitochondrial out membrane potential, up-regulation of Bax, down-regulation of Bcl-2, a release of cytochrome c, caspase-9 and caspase-3 activation and a cleavage of poly (ADP-ribose) polymerase in both Hep G2 and SMMC7721 cells, suggesting ARG-induced apoptosis was associated with the mitochondria mediated pathway. Moreover, the activation of caspase-8 and the increased expression levels of Fas/FasL and TNF-α revealed that the Fas/FasL-related pathway was also involved in this process. Additionally, ARG induced apoptosis was accompanied by a deactivation of PI3K/p-Akt pathway, an accumulation of p53 protein and an inhibition of NF-κB nuclear translocation especially in Hep G2 cells, which might be the reason that Hep G2 was more sensitive than SMMC7721 cells to ARG treatment.  相似文献   

13.
We have previously shown that Compound 5 (Cpd 5), an inhibitor of protein phosphatase Cdc25A, inhibits Hep3B human hepatoma cell growth. We now show that hepatocyte growth factor (HGF), a hepatocyte growth stimulant, can strongly enhance Cpd 5-induced growth inhibition in Hep3B cells, and this enhancement in cell growth inhibition is correlated with a much stronger ERK phosphorylation when compared to cells treated with Cpd 5 or HGF separately. We found that HGF/Cpd 5-induced ERK phosphorylation and cell growth inhibition were mediated by Akt (protein kinase B) pathway, since combination HGF/Cpd 5 treatment of Hep3B cells inhibited Akt phosphorylation at Ser-473 and its kinase activity, which led to the suppression of Raf-1 phosphorylation at Ser-259. The suppression of Raf-1 Ser-259 phosphorylation caused the induction of Raf-1 kinase activity, as well as hyper-ERK phosphorylation. Transient transfection of Hep3B cells with dominant negative Akt c-DNA further enhanced both Cpd 5- and HGF/Cpd 5-induced ERK phosphorylation, while over-expression of wild-type Akt c-DNA diminished their effects. In contrast, HGF antagonized the growth inhibitory actions of Cpd 5 on normal rat hepatocytes, thus showing a selective effect on tumor cells compared to normal cells. Our data suggest that Akt kinase negatively regulates MAPK activity at the Akt-Raf level. Suppression of Akt activity by either combination HGF/Cpd 5 treatment or by dominant negative Akt c-DNA transfection antagonizes the Akt inhibitory effect on Raf-1, resulting in an enhancement of Cpd 5-induced MAPK activation and cell growth inhibition.  相似文献   

14.
目的:将携带Livin的质粒pIRES2-EGFP-Livin进行扩增,转染自然杀伤细胞(NK)及胃癌细胞株SGC-7901,并检测其在NK及胃癌细胞株SGC-7901中的表达。方法:将携带Livin基因的质粒p IRES2-EGFP-Livin进行扩增,鉴定质粒纯度与浓度;从健康人外周血中获得NK细胞,应用HP转染试剂将质粒pIRES2-EGFP-Livin转染体外培养的NK及胃癌细胞,对比分析NK及胃癌细胞株SGC-7901中基因转染效率及目的基因的表达情况。结果:用无血清培养基在体外成功的扩增大量的NK细胞;质粒提取试剂盒抽提得到大量无内毒素的质粒,质粒DNA基因序列并未发生突变,浓度和纯度较高。胃癌细胞株SGC-7901中观察到明显的质粒pIRES2-EGFP-Livin绿色荧光表达;而NK中未观察到绿色荧光表达。结论:质粒pIRES2-EGFP-Livin能使Lvin蛋白表达于胃癌细胞株SGC-7901中,而在NK中未表达。  相似文献   

15.
Accumulating studies have suggested that microRNA‐760 (miR‐760) plays an important role in chemoresistance of various cancer cells. However, whether miR‐760 regulates the chemoresistance of hepatocellular carcinoma (HCC) remains unclear. In this study, we found that miR‐760 was decreased in HCC cell lines, and doxorubicin (Dox) treatment significantly decreased miR‐760 expression in HCC cells. Overexpression of miR‐760 sensitized HCC cells to Dox‐induced cytotoxicity and apoptosis, whereas miR‐760 inhibition showed the opposite effects. Notch1 was predicted as a target gene of miR‐760. miR‐760 negatively regulated Notch1 expression and Notch1/Hes1 signaling. Overexpression of miR‐760 increased PTEN expression and decreased the phosphorylation of Akt. Activation of Notch signaling significantly reversed the inhibitory effect of miR‐760 on Dox‐resistance and abrogated the effect of miR‐760 on the PTEN/Akt signaling pathway in HCC cells. Overall, our results demonstrate that miR‐760 inhibits Dox‐resistance in HCC cells through inhibiting Notch1 and promoting PTEN expression.  相似文献   

16.
17.
The aim of the present study was to determine the effects of ARHI (aplasia Ras homologue member I; also known as DIRAS3), a member of the Ras superfamily, on HCC (hepatocellular carcinoma) cells and to define the molecular pathways involved. Stable transfection of ARHI into the HCC cell line Hep3B that lacks expression of this gene reduced cell proliferation significantly as compared with the transfection of empty vector (P<0.01). Moreover, the re-expression of ARHI induced significant apoptosis, whereas a few vector transfectants or non-transfected cells displayed apoptosis. Mechanistically, ARHI restoration impeded the activation of both Akt (also called protein kinase B) and NF-κB (nuclear factor κB). In vivo, restoring ARHI also exerted suppressive effects on xenograft tumour growth, which was coupled with increased apoptosis. Together, these results indicate that ARHI has pro-apoptotic effects on HCC cells, which is associated with the inactivation of both Akt and NF-κB survival pathways.  相似文献   

18.
Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G(2)/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G(2)/M to the G(1) phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G(2) arrest that is alleviated by activated Akt. Furthermore, the transition from the G(2)/M to the G(1) phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G(2)/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G(2)/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.  相似文献   

19.
Here, we show a functional role of casein kinase I (CKI) epsilon in hematopoietic cell survival through the modification of phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Introduction of wild-type (WT)-CKIepsilon into interleukin-3 (IL-3)-dependent 32D cells increased the sensitivity to genotoxic stresses, such as gamma-irradiation, etoposide, and IL-3 deprivation, whereas kinase-negative (KN)-CKIepsilon suppressed it. Contrary to KN-CKIepsilon, WT-CKIepsilon attenuated the IL-3-induced activation of Akt with the increase of PTEN activity. Similarly, the increase of Akt activation, as well as PTEN inactivation, was accompanied both by a decrease of CKIepsilon expression induced by all-trans retinoic acid and by the addition of a specific inhibitor for CKIepsilon in HL-60 cells. CKIepsilon seems to activate PTEN by physical interaction. These results suggest that the CKIepsilon-induced down-regulation of PI3K/Akt signaling through PTEN lead to amplified sensitivity to apoptosis. Thus, the suppression of CKIepsilon in many human leukemia cell lines may play a role in the cell immortalization.  相似文献   

20.
Phosphatase and tensin homolog (PTEN) is an important tumor-suppressor gene which constitutes an important PI3K/Akt pathway by regulating the signaling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth has been gaining increasing attention. However, the role of PTEN in regulating apoptosis of canine mammary tumors cells still needs further investigation. In this experiment, the effect of PTEN on proliferation and apoptosis in canine mammary tumors (CMT) cells was analyzed. As a result, gene and protein expression levels of apoptosis-related genes were detected. Eukaryotic expression vector pcDNA3.1+-PTEN were successfully constructed and stably transferred into canine CMT cells after geneticin (G418) selection. After pcDNA3.1+-PTEN transfection, compared with control group, the cells proliferation was inhibited and the cell apoptosis was increased in CMT cells. The expression of p-Akt was decreased and the apoptosis-related genes, such as caspase-3, caspase-9, and Bax, were increased. These data serve to demonstrate the function of PTEN on apoptosis and gene regulatory in PI3K/Akt pathway in CMT cells. Collectively, our data link the tumor-suppressor activities of PTEN to the machinery controlling cell cycle through the modulation of signaling molecules whose signal target is the functional inactivation of the apoptosis gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号