首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study the effect of indomethacin-induced prostaglandin deficiency was examined on the release of bombesin-like immunoreactivity (BLI), a putative peptidergic neurotransmitter, from the isolated perfused rat stomach. In addition, gastrin and somatostatin (SLI) secretion was determined. Pretreatment of rats with indomethacin (2 mg/kg X h) resulted in a 3-fold increase of basal BLI secretion. In response to acetylcholine (2 X 10(-6) M) BLI rose from 2,000 to 4,000 pg/min, whereas in controls BLI increased from 400 to 1,400 pg/min. While absolute values for BLI secretion were higher in indomethacin-treated stomachs the relative increase above baseline was lower (100 vs. 250%). In control rats the increase in BLI secretion in response to acetylcholine was abolished when the acidity in the gastric lumen was increased from pH 7 to pH 2. After indomethacin, however, the stimulatory effect of acetylcholine during luminal pH 7 and pH 2 was identical. The decrease of SLI by acetylcholine at luminal pH 7 was abolished in indomethacin-treated stomachs in response to 10(-6) M acetylcholine, and 2 X 10(-6) M had even a stimulatory effect on SLI secretion. Indomethacin pretreatment reduced gastrin secretion at luminal pH 7. These data demonstrate that endogenous prostaglandins exert an inhibitory tone on basal and stimulated BLI and stimulated SLI secretion in the rat stomach. It is suggested that endogenous prostaglandins also inhibit the release of a peptidergic neurotransmitter, similar to their effect on the classical neurotransmitters acetylcholine and norepinephrine.  相似文献   

2.
Bombesin-like immunoreactivity (BLI) has been demonstrated in neurons of the gastrointestinal tract and gastric BLI secretion can be demonstrated in response to the classical neurotransmitter acetylcholine. Since structurally related peptides VIP, PHI and GRF have to be considered as peptidergic neurotransmitters it was of interest to determine their effect on gastric BLI secretion. Additionally, somatostatin (SLI) and gastrin secretion was examined. The isolated stomach of overnight fasted rats was perfused with Krebs-Ringer buffer via the celiac artery and the effluent was collected via the portal vein. The gastric lumen was perfused with isotonic saline at pH7 or pH2. All four peptides were tested at a dose of 10(-11) M and 10(-8) M at both pH levels and in addition the effect of VIP and PHI was examined at 10(-14) M and 10(-12) M during luminal pH2. At luminal pH7 VIP and PHI stimulated SLI release at 10(-8) M but had no effect on BLI or gastrin secretion. rGRF and hpGRF were both ineffective on SLI and gastrin release while rGRF inhibited and hpGRF stimulated BLI secretion. This effect was not dose related. At luminal pH2 all four peptides stimulated BLI secretion. Stimulation by PHI was already observed at a dose of 10(-14) M while VIP elicited a stimulatory effect at 10(-12) M. PHI at the two lowest concentrations of 10(-14) and 10(-12) M elicited a stimulation of SLI and gastrin release while the same doses of VIP and the higher doses of all four peptides had no effect on SLI and gastrin secretion at an acidic intraluminal pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In the present study the release of bombesin-like immunoreactivity (BLI), somatostatin and gastrin was determined form the isolated perfused rat stomach. Gastric inhibitory polypeptide (GIP, 2 X 10(-9) M) had no effect on BLI while stimulating somatostatin and gastrin release. In these experiments the luminal pH of the stomach was kept at pH 7. Reduction of the luminal pH to 2 resulted in an inhibition of BLI secretion by GIP while gastrin release was abolished and somatostatin remained unaffected compared to luminal pH 7. Acetylcholine (10(-6) and 2 X 10(-6) M) elicited a dose-dependent stimulation of BLI secretion while gastrin was stimulated and somatostatin secretion suppressed independent of the administered dose. The present data demonstrate that release of bombesin-like immunoreactivity can be modulated by intestinal hormones and neurotransmitters and is integrated into the complex system of gastrointestinal neuroendocrine regulation.  相似文献   

4.
Galanin has been shown to be present in the gastrointestinal tract, pancreas and CNS. In the rat stomach, immunohistochemical studies have revealed the presence of galanin in the intrinsic nervous system suggesting a function as putative neurotransmitter or neuromodulator which could affect neighbouring exo- or endocrine cells. Therefore this study was performed to determine the effect of galanin on the secretion of gastrin and somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach. The stomach was perfused via the celiac artery and the venous effluent was collected from the portal vein. The luminal content was kept at pH 2 or 7 Galanin at a concentration of 10(-10), 10(-9) and 10(-8) M inhibited basal gastrin release by 60-70% (60-100 pg/min; p less than 0.05) at luminal pH 7. At luminal pH 2 higher concentrations of galanin (10(-9) and 10(-8) M) decreased basal gastrin secretion by 60-70% (60-100 pg/min; p less than 0.05). This inhibitory effect was also present during infusion of neuromedin-C, a mammalian bombesin-like peptide that stimulates gastrin release. SLI secretion remained unchanged during galanin administration. The inhibitory action of galanin on gastrin secretion was also present during the infusion of tetrodotoxin suggesting that this effect is not mediated via neural pathways. The present data demonstrate that galanin is an inhibitor of basal and stimulated gastrin secretion and has to be considered as an inhibitory neurotransmitter which could participate in the regulation of gastric G-cell function.  相似文献   

5.
Summary The relationship between bombesin-like immunoreactive (bombesin-LI) nerve fibres and gastrin-LI G-cells was examined in gastric antral mucosa from guineapig, rat, dog and man using a double-labelling fluorescence immunohistochemical technique. The greatest density of bombesin-LI nerve fibres was found within the basal mucosa in all species and the density of innervation decreased towards the luminal surface. Most G-cells were in a band occupying approximately the middle third of the mucosa. The proportion of G-cells found within a distance of 2 m from bombesin-LI nerve fibres was low in all species (6% in the guinea-pig, 22% in the rat, 14% in the dog, and 9% in the human). It is proposed that the neuropeptide released from bombesin-LI antral mucosal nerve fibres traverses distances of greater than several m to reach the target G-cells. This may be achieved by passage through the mucosal microcirculation.  相似文献   

6.
We and others have recently reported an involvement of calcium (Ca2+)-mediated intracellular pathways in the release of antral gastrin in response to bombesin (BBS), while cyclic adenosine 3'5'-monophosphate (cAMP) potentiated the gastrin response to BBS. In this study we examined the effect of cyclic nucleotides on BBS-induced gastrin release from isolated perfused rat stomachs. Dibutyryl cyclic AMP (dbcAMP, 1 mM), and Rolipram (a phosphodiesterase inhibitor, 0.5 microM), stimulated basal gastrin secretion and potentiated BBS-induced gastrin release. The stimulation of gastrin release by BBS was not altered by Wiptide (a cAMP dependent protein kinase inhibitor, 1.0 microM), but was surprisingly inhibited by dbcGMP (1 mM). The cAMP content in antral mucosa or in the perfusates was not changed after infusion of BBS. These findings coupled with previous results suggest that BBS-provoked gastrin release is principally coupled to a Ca2+-mediated intracellular pathway, and that an activation of the adenylate cyclase mediated pathway is not involved. Intracellular cGMP, however, may participate in the negative regulation of gastrin release induced by BBS.  相似文献   

7.
B Saffouri  G Weir  K Bitar  G Makhlouf 《Life sciences》1979,25(20):1749-1753
The effect of a high capacity somatostatin antiserum on antral gastrin secretion was examined in an isolated vascularly perfused rat stomach preparation. Infusion of somatostatin antiserum diluted 1:1 and 1:9 with Krebs buffer solution produced significant increases in gastrin secretion throughout the period of infusion. Neither infusion of somatostatin antiserum diluted 1:99 nor infusion of control rabbit serum had any effect on gastrin secretion. The data indicate that antral somatostatin excercises a continous restraint on gastrin secretion in the basal state.  相似文献   

8.
Summary The distribution of gastrin immunoreactivity in the rat gut was examined by immunochemical and immunohistochemical techniques. Gastrin occurs predominantly in the antrum proper, but gastrin is found also in the adjacent part of the oxyntic mucosa and in the duodenum. In the remainder of the gut the gastrin concentration is very low. No gastrin cells and very low gastrin concentrations are observed in the antrum at birth. The gastrin concentration as well as the number of gastrin cells increases progressively with age. The antral gastrin concentration reaches adult or near-adult values 30–40 days after birth.This study was supported by the Swedish Medical Research Council (04 X-1007), by Riksföreningen mot Cancer (660-0 IX), Landsforeningen till Kraeftens Bekampelse, Danish Medical Research Council (512-6) and Fonden for Storkobenhavn, Faeroerne og Gronland.  相似文献   

9.
We have studied the role of vitamin D in the regulation of gastrin and gastric somatostatin secretion from the isolated perfused rat stomach. In Ca-deficient vitamin D-deficient rats (Ca(-)D(-) group), the basal and bombesin-stimulated gastrin and gastric somatostatin release (basal IRGa, basal IRS, sigma delta IRGa, and sigma delta IRS) all were significantly lower than in Ca-replete vitamin D-replete rats (Ca(+)D(+) group), and also lower than in Ca-replete vitamin D-deficient rats (Ca(+)D(-) group) except for the basal IRGa. In the Ca(+)D(-) group, the basal IRGa and IRS, and sigma delta IRS were not significantly lower than in the Ca(+)D(+) group. Although there was no significant impairment in basal IRGa, sigma delta IRGa in the Ca(+)D(-) group was significantly lower than in the Ca(+)D(+) control group. Thus, the gastrin and gastric somatostatin secretion from the Ca-deficient vitamin D-deficient rats were impaired. In addition, the impaired gastrin and gastric somatostatin secretions seem to be caused not only by a decrease in serum Ca but also by the reduced effect of the vitamin D on the G and gastric D cells.  相似文献   

10.
H Koop  R Arnold 《Regulatory peptides》1984,9(1-2):101-108
The influence of exogenous serotonin on the secretion of gastric somatostatin and gastrin was investigated under in vitro conditions using an isolated, vascularly perfused rat stomach preparation. Serotonin stimulated gastrin release, maximal effects were observed at 10(-6) M which increased gastrin levels by 78%; on the contrary, somatostatin secretion was inhibited (maximal inhibition of 56% at 10(-6) M). Changes in hormone secretion in response to serotonin were reversed by combined blockade of 5-HT1 and 5-HT2 receptors by methysergide and blockade of 5-HT2 receptors by ketanserin (10(-5) and 10(-6) M, respectively), and of cholinoreceptors by atropine (10(-5) M). It is concluded that in rats in vitro serotonin inhibits release of gastric somatostatin and stimulates gastrin secretion via specific serotonin receptors but muscarinic cholinergic receptors are also involved.  相似文献   

11.
The effect of gamma-aminobutyric acid (GABA) on basal and bombesin (BBS)-stimulated release of somatostatin (SLI) and gastrin from isolated perfused rat stomach was examined. In the control study, BBS at a dose of 10 nM significantly stimulated release of SLI and gastrin. Infusion of GABA (1-1000 nM) caused a depression of SLI release induced by BBS (10 nM) in a dose-dependent fashion. However, at doses used in this study GABA had no effect on either basal level of SLI and gastrin or BBS-elicited gastrin release. These results indicate that GABA can specifically modulate BBS-induced SLI release from rat stomach.  相似文献   

12.
Secretion of somatostatin-like immunoreactivity (SLI) from the isolated perfused rat stomach has been shown to be inhibited by substance P. The present study was initiated to examine the possibility that this action of substance P was mediated via release of histamine. Substance P (1 microM) reduced basal secretion of SLI in agreement with earlier studies. Neither pyrilamine nor cimetidine influenced this action. Basal immunoreactive gastrin (IRG) secretion was unaffected by substance P. Addition of pyrilamine during substance P perfusion increased IRG secretion whereas addition of cimetidine resulted in a delayed decrease on removal of both compounds. Histamine (1 and 10 microM) increased SLI secretion and reduced IRG secretion. Pyrilamine increased and cimetidine decreased IRG secretion but neither drug influenced SLI secretion. Pyrilamine had no effect on histamine-stimulated SLI secretion but inhibition of IRG secretion by histamine was converted to stimulation. Cimetidine potentiated histamine stimulation of SLI secretion and inhibition of IRG secretion. In conclusion: (1) substance P inhibition of SLI secretion is unlikely to be mediated via release of histamine. (2) The gastrin cell appears to have both H1- and H2-receptors which mediate opposite actions but H1-receptor-mediated inhibition is predominant. (3) Histamine weakly stimulates SLI secretion but there may be both inhibitory and stimulatory pathways acting via H2- and H1-receptors, respectively.  相似文献   

13.
Rat antral mucosal fragments were maintained in short-term culture to examine the relative potencies and receptor specificity of the cholinergic agonist, carbachol, and adrenergic agents, norepinephrine, isoproterenol, clonidine and phenylephrine in stimulating gastrin release. Results of these studies indicate that norepinephrine and carbachol evoke pharmacologically and temporally distinctive patterns of antral gastrin release. Dose-response experiments indicate that norepinephrine is approximately 10,000 times more potent on a molar basis than carbachol in stimulating antral gastrin release. Adrenergic (norepinephrine, isoproterenol) stimulation of antral gastrin release was prevented by propranolol, and cholinergic- (carbachol) mediated peptide release was blocked by both atropine and pirenzepine. Phenylephrine and clonidine did not alter basal gastrin release. The pattern of peptide release as a function of time was quite different for each agent: norepinephrine exerted its stimulatory effect acutely during the initial 30 minutes of incubation, while carbachol exhibited a sustained stimulatory action throughout the 2-hour culture period. In conclusion, data from these studies suggests that there are marked differences between norepinephrine and carbachol in their pharmacological potency and time-dependent activation of the G cell.  相似文献   

14.
We have recently reported that bombesin (BBS)-stimulated gastrin release is principally dependent on a Ca2+/calmodulin intracellular pathway, and that it is independent of the cyclic AMP-mediated pathway. Recently it was demonstrated that stimulation of protein kinase C (PK-C) resulted in increased gastrin release from the isolated canine G-cells in cultures. The role of PK-C in the BBS-evoked gastrin release, however, remains unexamined. In this study we examined a possible role of PK-C in the secretion of BBS-stimulated gastrin from isolated perfused rat stomach. The effect of phosphorylation on gastrin release, in response to BBS, was also determined. Administration of phorbol ester (PMA 10-100 nM, a PK-C activator) alone significantly provoked gastrin release, but markedly inhibited the BBS (1 nM) stimulated gastrin secretion in a dose-dependent manner. Molybdic acid (phosphatase inhibitor), caused an enhancement of BBS-evoked gastrin response at doses of 5 or greater than 5 mM. These results suggest that: (1) diacylglycerol/PK-C pathway may exert a negative feedback control over BBS-induced gastrin release; (2) phosphorylation step is required for gastrin secretion in response to BBS.  相似文献   

15.
The effects of naloxone, an opiate antagonist, on basal and vagus nerve-induced secretions of GRP, gastrin, and somatostatin were examined using the isolated perfused rat stomach prepared with vagal innervation. Naloxone (10(-6) M) significantly inhibited basal somatostatin secretion in the presence and absence of atropine and of hexamethonium, whereas basal GRP and gastrin secretion was not affected by naloxone. Electrical stimulation (10 Hz, lms duration, 10V) of the distal end of the subdiaphragmatic vagal trunks elicited a significant increase in both GRP and gastrin but a decrease in somatostatin. Naloxone (10(-6) M) failed to affect these responses in the presence or absence of atropine. On the other hand, when hexamethonium was infused, naloxone significantly inhibited both the GRP and gastrin responses to electrical vagal stimulation. Somatostatin secretion was unchanged by vagal stimulation during the infusion of hexamethonium with or without naloxone. These findings suggest that basal somatostatin secretion is under the control of an opiate neuron and that opioid peptides might be involved in vagal regulation of GRP and gastrin secretion.  相似文献   

16.
Recently we have shown the release of bombesin-like immunoreactivity (BLI) from the isolated perfused rat stomach. In these experiments we have shown that BLI secretion is stimulated by acetylcholine. Gastric inhibitory peptide (GIP) exerts an inhibitory effect which is dependent on the intraluminal pH. The present study was designed to examine further the exact cholinergic mechanisms and to study the interaction between cholinergic and histaminergic mechanisms as well as the effect of the intraluminal pH. Acetylcholine elicited a dose-dependent increase in BLI and gastrin secretion (10(-6) M and 2 X 10(-6)M), whereas somatostatin release was suppressed at luminal pH 7. Blockade of muscarinic cholinergic receptors by atropine (10(-5)M) and nicotinic cholinergic receptors by hexamethonium (10(-5) M) abolished the effect of acetylcholine on all three peptides. Reduction of the intraluminal pH to 2 also abolished acetylcholine-induced stimulation of BLI and gastrin secretion and the inhibition of somatostatin secretion. Changes of intraluminal pH per se had no effect on the secretion of either peptide. Somatostatin (10(-7) M) reduced both BLI and gastrin secretion during stimulation with acetylcholine. The addition of the H2-receptor antagonist cimetidine (10(-5) M) abolished the effect of both doses of acetylcholine on BLI and somatostatin secretion and also the effect of the lower dose of acetylcholine (10(-6) M) on gastrin secretion during luminal pH 7. At luminal pH 2 cimetidine did not alter BLI and somatostatin secretion in response to acetylcholine, however, gastrin release was augmented in the presence of cimetidine. These data demonstrate that the effect of acetylcholine on BLI, gastrin, and somatostatin secretion is mediated by muscarinic and nicotinic cholinergic receptors and also by histamine H2-receptors. Somatostatin inhibits cholinergically induced BLI secretion. The cholinergic effects on BLI, somatostatin and gastrin secretion are abolished during an acidic intragastric pH. In this isolated perfused rat stomach model the inhibitory effect of intraluminal acid on gastrin secretion is, at least in part, mediated by H2-receptors. This suggests that the secretion of bombesin, a potential peptidergic neurotransmitter is modulated by neural, endocrine and local tissue factors and also by alterations of intragastric pH.  相似文献   

17.
电针频率对大鼠脊髓灌流液中SOM和CGRP含量的影响   总被引:16,自引:0,他引:16  
Tian JB  Shen S  Han JS 《生理学报》1998,50(1):101-105
本研究采用放射测定法,分析不同频率电针刺激下大鼠脊髓流液中抑制素(SOM0和降钙素基因相关肽(CGRP)放免活性(ir)的变化。电针频率选择2,15和100Hz,分别收集电针前、中、后各30min脊髓灌流液进行测定,实验结果如下:(1)低频(2Hz)电针使脊髓脊流液中SOM-ir水平升高39%(P〈0.05),CGRP-ir降低47%(P〈0.05);(2)中频电针(15Hz)则相反,使SOM-i  相似文献   

18.
19.
In order to elucidate the effect of glucagon antiserum on the endocrine pancreas, the release of somatostatin, glucagon, and insulin from the isolated perfused rat pancreas was studied following the infusion of arginine both with and without pretreatment by glucagon antiserum. Various concentrations of arginine in the presence of 5.5 mM glucose stimulated both somatostatin and glucagon secretion. However, the responses of somatostatin and glucagon were different at different doses of arginine. The infusion of glucagon antiserum strongly stimulated basal secretion in the perfusate total glucagon (free + antibody bound glucagon) and also enhanced its response to arginine, but free glucagon was undetectable in the perfusate during the infusion. On the other hand, the glucagon antiserum had no significant effect on either insulin or somatostatin secretion. Moreover, electron microscopic study revealed degrannulation and vacuolization in the cytoplasm of the A cells after exposure to glucagon antiserum, suggesting a hypersecretion of glucagon, but no significant change was found in the B cells or the D cells. We conclude that in a single pass perfusion system glucagon antiserum does not affect somatostatin or insulin secretion, although it enhances glucagon secretion.  相似文献   

20.
The present study was performed to evaluate the role of glucagon in the regulation of ghrelin secretion from the rat stomach. mRNA for ghrelin and glucagon receptor was expressed predominantly in the lower body and pylorus of stomach, but little or not in the upper body and cardia. Ghrelin- and glucagon receptor-immunoreactive cells were detected in lamina propria mucosae of stomach and some cells expressed both. Intravenous administration of glucagon caused transient increases in both acyl- and desacyl-ghrelin levels in the gastric vein within 10 min, which was followed by gradual increases in desacyl-ghrelin levels until 60 min. Steady state levels of ghrelin mRNA in the stomach were increased by 1.9-fold 20 min after glucagon administration, but not at 5 or 120 min. These results suggest that glucagon stimulates acute release of both forms of ghrelin and thereafter upregulates synthesis and release of desacyl-ghrelin in the rat stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号