首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 223 毫秒
1.
The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter(-1). This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter(-1) after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter(-1), besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter(-1). The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.  相似文献   

2.
The gene loci ehyAB, calA, and calB, encoding eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase, respectively, which are involved in the first steps of eugenol catabolism in Pseudomonas sp. strain HR199, were amplified by PCR and combined to construct a catabolic gene cassette. This gene cassette was cloned in the newly designed broad-host-range vector pBBR1-JO2 (pBBR1-JO2ehyABcalAcalB) and transferred to Ralstonia eutropha H16. A recombinant strain of R. eutropha H16 harboring this plasmid expressed functionally active eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase. Cells of R. eutropha H16(pBBR1-JO2ehyABcalAcalB) from the late-exponential growth phase were used as biocatalysts for the biotransformation of eugenol to ferulic acid. A maximum conversion rate of 2.9 mmol of eugenol per h per liter of culture was achieved with a yield of 93.8 mol% of ferulic acid from eugenol within 20 h, without further optimization.  相似文献   

3.
The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-β-oxidative pathway for ferulic acid bioconversion, which involves feruloyl–CoA synthetase (Fcs), enoyl–CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a β-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.  相似文献   

4.
To harness eugenol as cheap substrate for the biotechnological production of aromatic compounds, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was cloned in an expression vector suitable for Gram-positive bacteria and expressed in the vanillin-tolerant Gram-positive strain Amycolatopsis sp. HR167. Recombinant strains harboring hybrid plasmid pRLE6SKvaom exhibited a specific vanillyl alcohol oxidase activity of 1.1U/g protein. Moreover, this strain had gained the ability to grow on eugenol as sole carbon source. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, guajacol, and vanillic acid were detected as excreted compounds during growth on eugenol, whereas vanillin could only be detected in trace amounts. Resting cells of Amycolatopsis sp. HR167 (pRLE6SKvaom) produced coniferyl alcohol from eugenol with a maximum conversion rate of about 2.3 mmol/h/l of culture, and a maximum coniferyl alcohol concentration of 4.7 g/1 was obtained after 16 h biotransformation without further optimization. Beside coniferyl alcohol, traces of coniferyl aldehyde and ferulic acid were also detected.  相似文献   

5.
The coniferyl aldehyde dehydrogenase (CALDH) of Pseudomonas sp. strain HR199 (DSM7063), which catalyzes the NAD+-dependent oxidation of coniferyl aldehyde to ferulic acid and which is induced during growth with eugenol as the carbon source, was purified and characterized. The native protein exhibited an apparent molecular mass of 86,000 ± 5,000 Da, and the subunit mass was 49.5 ± 2.5 kDa, indicating an α2 structure of the native enzyme. The optimal oxidation of coniferyl aldehyde to ferulic acid was obtained at a pH of 8.8 and a temperature of 26°C. The Km values for coniferyl aldehyde and NAD+ were about 7 to 12 μM and 334 μM, respectively. The enzyme also accepted other aromatic aldehydes as substrates, whereas aliphatic aldehydes were not accepted. The NH2-terminal amino acid sequence of CALDH was determined in order to clone the encoding gene (calB). The corresponding nucleotide sequence was localized on a 9.4-kbp EcoRI fragment (E94), which was subcloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The partial sequencing of this fragment revealed an open reading frame of 1,446 bp encoding a protein with a relative molecular weight of 51,822. The deduced amino acid sequence, which is reported for the first time for a structural gene of a CALDH, exhibited up to 38.5% amino acid identity (60% similarity) to NAD+-dependent aldehyde dehydrogenases from different sources.  相似文献   

6.
7.
The gene loci ehyAB, calA, and calB, encoding eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase, respectively, which are involved in the first steps of eugenol catabolism in Pseudomonas sp. strain HR199, were amplified by PCR and combined to construct a catabolic gene cassette. This gene cassette was cloned in the newly designed broad-host-range vector pBBR1-JO2 (pBBR1-JO2ehyABcalAcalB) and transferred to Ralstonia eutropha H16. A recombinant strain of R. eutropha H16 harboring this plasmid expressed functionally active eugenol hydroxylase, coniferyl alcohol dehydrogenase, and coniferyl aldehyde dehydrogenase. Cells of R. eutropha H16(pBBR1-JO2ehyABcalAcalB) from the late-exponential growth phase were used as biocatalysts for the biotransformation of eugenol to ferulic acid. A maximum conversion rate of 2.9 mmol of eugenol per h per liter of culture was achieved with a yield of 93.8 mol% of ferulic acid from eugenol within 20 h, without further optimization.  相似文献   

8.
Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent K m, k cat, and V max values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (k cat/K m) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation.  相似文献   

9.
When exposed to oxidation, algae release dissolved organic matter with significant carbohydrate (52%) and biodegradable (55 to 74%) fractions. This study examined whether algal organic matter (AOM) added in drinking water can compromise water biological stability by supporting bacterial survival. Escherichia coli (1.3 × 105 cells ml−1) was inoculated in sterile dechlorinated tap water supplemented with various qualities of organic substrate, such as the organic matter coming from chlorinated algae, ozonated algae, and acetate (model molecule) to add 0.2 ± 0.1 mg of biodegradable dissolved organic carbon (BDOC) liter−1. Despite equivalent levels of BDOC, E. coli behavior depended on the source of the added organic matter. The addition of AOM from chlorinated algae led to an E. coli growth equivalent to that in nonsupplemented tap water; the addition of AOM from ozonated algae allowed a 4- to 12-fold increase in E. coli proliferation compared to nonsupplemented tap water. Under our experimental conditions, 0.1 mg of algal BDOC was sufficient to support E. coli growth, whereas the 0.7 mg of BDOC liter−1 initially present in drinking water and an additional 0.2 mg of BDOC acetate liter−1 were not sufficient. Better maintenance of E. coli cultivability was also observed when AOM was added; cultivability was even increased after addition of AOM from ozonated algae. AOM, likely to be present in treatment plants during algal blooms, and thus potentially in the treated water may compromise water biological stability.  相似文献   

10.
An efficient and user-friendly bacterial transformation method by simple spreading cells with aminoclays was demonstrated. Compared to the reported transformation approaches using DNA adsorption or wrapping onto (in)organic fibers, the spontaneously generated clay-coated DNA suprastructures by mixing DNA with aminoclay resulted in transformants in both Gram-negative (Escherichia coli) and Gram-positive cells (Streptococcus mutans). Notably, the wild type S. mutans showed comparable transformation efficiency to that of the E. coli host for recombinant DNA cloning. This is a potentially promising result because other trials such as heat-shock, electroporation, and treatment with sepiolite for introducing DNA into the wild type S. mutans failed. Under defined conditions, the transformation efficiency of E. coli XL1-Blue and S. mutans exhibited ~ 2 × 105 and ~ 6 × 103 CFU/μg of plasmid DNA using magnesium-aminoclay. In contrast, transformation efficiency was higher in S. mutans than that in E. coli XL1-Blue for calcium-aminoclay. It was also confirmed that each plasmid transformed into E. coli and S. mutans was stably maintained and that they expressed the inserted gene encoding the green fluorescent protein during prolonged growth of up to 80 generations.  相似文献   

11.
The compatible solute 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) acts in microorganisms as an osmotic counterweight against halostress and has attracted commercial attention as a protecting agent. Its production and application are restricted by the drawbacks of the discontinuous harvesting procedure involving salt shocks, which reduces volumetric yield, increases reactor corrosion, and complicates downstream processing. In order to synthesize ectoine continuously in less-aggressive media, we introduced the ectoine genes ectABC of the halophilic bacterium Chromohalobacter salexigens into an Escherichia coli strain using the expression vector pASK-IBA7. Under the control of a tet promoter, the transgenic E. coli synthesized 6 g liter−1 ectoine with a space-time yield of 40 mg liter−1 h−1, with the vast majority of the ectoine being excreted.  相似文献   

12.
We have previously reported in vivo biosynthesis of polyhydroxyalkanoates containing 2-hydroxyacid monomers such as lactate and 2-hydroxybutyrate in recombinant Escherichia coli strains by the expression of evolved Clostridium propionicum propionyl-CoA transferase (PctCp) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Here, we report the biosynthesis of poly(2-hydroxybutyrate-co-lactate)[P(2HB-co-LA)] by direct fermentation of metabolically engineered E. coli strain. Among E. coli strains WL3110, XL1-Blue, and BL21(DE3), recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 produced P(76.4mol%2HB-co-23.6mol%LA) to the highest content of 88 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 2-hydroxybutyrate. When recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 was cultured in a chemically defined medium containing 20 g/L of glucose and varying concentration of sodium 2-hydroxybutyrate, 2HB monomer fraction in P(2HB-co-LA) increased proportional to the concentration of sodium 2-hydroxybutyrate added to the culture medium. P(2HB-co-LA)] could also be produced from glucose as a sole carbon source without sodium 2-hydroxybutyrate into the culture medium. Recombinant E. coli XL1-Blue strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene, successfully produced P(23.5mol%2HB-co-76.5mol%LA)] to the polymer content of 19.4 wt% when it cultured in a chemically defined medium containing 20 g/L of glucose. The metabolic engineering strategy reported here should be useful for the production of novel copolymer P(2HB-co-LA)].  相似文献   

13.
In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD600 of 2–10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD600 of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al2O3 as catalyst in toluene with the yield of 96 %.  相似文献   

14.
The content of assimilable organic carbon has been proposed to control the growth of microbes in drinking water. However, recent results have shown that there are regions where it is predominantly phosphorus which determines the extent of microbial growth in drinking waters. Even a very low concentration of phosphorus (below 1 μg of P liter−1) can promote extensive microbial growth. We present here a new sensitive method to determine microbially available phosphorus concentrations in water down to 0.08 μg of P liter−1. The method is a bioassay in which the analysis of phosphorus in a water sample is based on maximum growth of Pseudomonas fluorescens P17 when the energy supply and inorganic nutrients, with the exception of phosphorus, do not limit bacterial growth. Maximum growth (CFU) in the water sample is related to the concentration of phosphorus with the factor 373,200 ± 9,400 CFU/μg of PO4-P. A linear relationship was found between cell growth and phosphorus concentration between 0.05 to 10 μg of PO4-P liter−1. The content of microbially available phosphorus in Finnish drinking waters varied from 0.1 to 10.2 μg of P liter−1 (median, 0.60 μg of P liter−1).  相似文献   

15.
The gene loci fcs, encoding feruloyl coenzyme A (feruloyl-CoA) synthetase, ech, encoding enoyl-CoA hydratase/aldolase, and aat, encoding β-ketothiolase, which are involved in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199 (DSM7063), were localized on a DNA region covered by two EcoRI fragments (E230 and E94), which were recently cloned from a Pseudomonas sp. strain HR199 genomic library in the cosmid pVK100. The nucleotide sequences of parts of fragments E230 and E94 were determined, revealing the arrangement of the aforementioned genes. To confirm the function of the structural genes fcs and ech, they were cloned and expressed in Escherichia coli. Recombinant strains harboring both genes were able to transform ferulic acid to vanillin. The feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase activities of the fcs and ech gene products, respectively, were confirmed by photometric assays and by high-pressure liquid chromatography analysis. To prove the essential involvement of the fcs, ech, and aat genes in the catabolism of ferulic acid and eugenol in Pseudomonas sp. strain HR199, these genes were inactivated separately by the insertion of omega elements. The corresponding mutants Pseudomonas sp. strain HRfcsΩGm and Pseudomonas sp. strain HRechΩKm were not able to grow on ferulic acid or on eugenol, whereas the mutant Pseudomonas sp. strain HRaatΩKm exhibited a ferulic acid- and eugenol-positive phenotype like the wild type. In conclusion, the degradation pathway of eugenol via ferulic acid and the necessity of the activation of ferulic acid to the corresponding CoA ester was confirmed. The aat gene product was shown not to be involved in this catabolism, thus excluding a β-oxidation analogous degradation pathway for ferulic acid. Moreover, the function of the ech gene product as an enoyl-CoA hydratase/aldolase suggests that ferulic acid degradation in Pseudomonas sp. strain HR199 proceeds via a similar pathway to that recently described for Pseudomonas fluorescens AN103.  相似文献   

16.
Benthic cyanobacterial mats with the filamentous Microcoleus chthonoplastes as the dominant phototroph grow in oxic hypersaline environments such as Solar Lake, Sinai. The cyanobacteria are in situ exposed to chemical variations between 200 μmol of sulfide liter−1 at night and 1 atm pO2 during the day. During experimental H2S to O2 transitions the microbial community was shown to shift from anoxygenic photosynthesis, with H2S as the electron donor, to oxygenic photosynthesis. Microcoleus filaments could carry out both types of photosynthesis concurrently. Anoxygenic photosynthesis dominated at high sulfide levels, 500 μmol liter−1, while the oxygenic reaction became dominant when the sulfide level was reduced below 100 to 300 μmol liter−1 (25 to 75 μmol of H2S liter−1). An increasing inhibition of the oxygenic photosynthesis was observed upon transition to oxic conditions from increasing sulfide concentrations. Oxygen built up within the Microcoleus layer of the mat even under 5 mmol of sulfide liter−1 (500 μmol of H2S liter−1) in the overlying water. The implications of such a localized O2 production in a highly reducing environment are discussed in relation to the evolution of oxygenic photosynthesis during the Proterozoic era.  相似文献   

17.
The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (105 to 106 CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 × 105 and 2.4 × 103 per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 × 105 CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (105 PFU/liter), and phage PP7 (105 PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters is ready for field deployment.  相似文献   

18.
The white rot fungus, Trametes sp., was cultivated in a medium containing ferulic acid, glucose and ethanol under aerobic conditions in submerged culture. The ferulic acid was transformed into coniferyl alcohol, coniferylaldehyde, dihydroconiferyl alcohol, vanillic acid, vanillyl alcohol, 2-methoxyhydroquinone and 2-methoxyquinone during 48–120 hr of cultivation. The amount of coniferyl alcohol in the culture reached a maximum after 90 hr with ca 40% of the initial amount of ferulic acid. Cinnamic acid, p-methoxycinnamic acid, 3,4-dimethoxycinnamic acid, p -coumaric acid and sinapic acid were also transformed into the corresponding alcohols, benzoic acids and benzyl alcohols in the fungus culture.  相似文献   

19.
Strains of Escherichia coli recently isolated from human feces were examined for the frequency with which they accept an R factor (R1) from a derepressed fi+ strain of E. coli K-12 and transfer it to fecal and laboratory strains. Colicins produced by some of the isolates rapidly killed the other half of the mating pair; therefore, conjugation was conducted by a membrane filtration procedure whereby this effect was minimized. The majority of fecal E. coli isolates accepted the R factor at lower frequencies than K-12 F, varying from 10−2 per donor cell to undetectable levels. The frequencies with which certain fecal recipients received the R-plasmid were increased when its R+ transconjugant was either cured of the R1-plasmid and remated with the fi+ strain or backcrossed into the parental strain. The former suggests the loss of an incompatibility plasmid, and the latter suggests the modification of the R1-plasmid deoxyribonucleic acid (DNA). In general, the fecal R+E. coli transconjugants were less effective donors for K-12 F and heterologous fecal strains than was the fi+ K-12 strain, whereas the single strain of Citrobacter freundii examined was generally more competent. Passage of the R1-plasmid to strains of salmonellae reached mating frequencies of 10−1 per donor cell when the recipient was a Salmonella typhi previously cured of its resident R-plasmid. However, two recently isolated strains of Salmonella accepted the R1-plasmid from E. coli K-12 R+ or the R+E. coli transconjugants at frequencies of 5 × 10−7 or less.  相似文献   

20.
The influence of glucose concentration on Cd, Cu, Hg, and Zn toxicity to a Klebsiella sp. was studied by following the degradation of 14C-labeled glucose at pH 6.0. Uptake of 14C into the cells was also determined. The carbon concentrations ranged from 0.01 to 40 mg liter−1, which are equivalent to soluble C concentrations in natural environments. The toxicity of Cu, Cd, and Zn to a Klebsiella sp. was affected considerably by the C concentration. Copper at 10−5 M was toxic when the carbon concentration was 10 or 40 mg liter−1, while at 0.01 to 1.0 mg liter−1 no toxicity was observed. Cadmium and zinc were toxic at 10−2 M in media containing 0.01 to 1.0 mg of C liter−1. At C concentrations greater than 1.0 mg liter−1, the inhibition of glucose degradation and carbon assimilation was observed at 10−3 M Cd and Zn. The toxicity of mercury seemed to be independent of the C concentration. Results of this study showed that the nutritional state of an organism may have a profound effect on its sensitivity to metals. Metals taken up by an energy-driven transport system may be less toxic under conditions of C starvation. The C concentration should be taken into account when evaluating results from toxicity studies, especially as most microorganisms in nature live under energy-limited conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号