首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multidrug resistance protein MRP1 is an ATP-dependent transporter of organic anions and chemotherapeutic agents. A significant number of ionizable amino acids are found in or proximal to the 17 transmembrane (TM) helices of MRP1, and we have investigated 6 of these at the cytoplasmic interface of TM13-17 for their role in MRP1 expression and transport activity. Opposite charge substitutions of TM13 Arg(1046) and TM15 Arg(1131) did not alter MRP1 expression nor did they substantially affect activity. In contrast, opposite charge substitutions of TM16 Arg(1202) and Glu(1204) reduced protein expression by >80%; however, MRP1 expression was not affected when Arg(1202) and Glu(1204) were replaced with neutral or same-charge residues. In addition, organic anion transport levels of the R1202L, R1202G, and R1202K mutants were comparable with wild-type MRP1. In contrast, organic anion transport by E1204L was substantially reduced, whereas transport by E1204D was comparable with wild-type MRP1, with the notable exception of GSH. Opposite charge substitutions of TM16 Arg(1197) and TM17 Arg(1249) did not affect MRP1 expression but substantially reduced transport. Mutants containing like-charge substitutions of Arg(1197) or Arg(1249) were also transport-inactive and no longer bound leukotriene C(4). In contrast, substrate binding by the transport-compromised E1204L mutant remained intact. Furthermore, vanadate-induced trapping of azido-ADP by E1204L was dramatically increased, indicating that this mutation may cause a partial uncoupling of the catalytic and transport activities of MRP1. Thus, Glu(1204) serves a dual role in membrane expression of MRP1 and a step in its catalytic cycle subsequent to initial substrate binding.  相似文献   

2.
Multidrug resistance protein 1 (MRP1) is an ATP-binding cassette transporter that effluxes drugs and organic anions across the plasma membrane. The 17 transmembrane helices of MRP1 are linked by extracellular and cytoplasmic loops (CLs), but their role in coupling the ATPase activity of MRP1 to the translocation of its substrates is poorly understood. Here we have examined the importance of CL5 by mutating eight conserved charged residues and the helix-disrupting Gly(511) in this region. Ala substitution of Lys(513), Lys(516), Glu(521), and Glu(535) markedly reduced MRP1 levels. Because three of these residues are predicted to lie at the interface of CL5 and the second nucleotide binding domain (NBD2), a critical role is indicated for this region in the plasma membrane expression of MRP1. Further support for this idea was obtained by mutating NBD2 amino acids His(1364) and Arg(1367) at the CL5 interface, which also resulted in reduced MRP1 levels. In contrast, mutation of Arg(501), Lys(503), Glu(507), Arg(532), and Gly(511) had no effect on MRP1 levels. Except for K503A, however, transport by these mutants was reduced by 50 to 75%, an effect largely attributable to reduced substrate binding and affinity. Studies with (32)P-labeled azido-ATP also indicated that whereas ATP binding by the G511I mutant was unchanged, vanadate-induced trapping of azido-ADP was reduced, indicating changes in the catalytic activity of MRP1. Together, these data demonstrate the multiple roles for CL5 in the membrane expression and function of MRP1.  相似文献   

3.
The polytopic 5-domain multidrug resistance protein 1 (MRP1/ABCC1) extrudes a variety of drugs and organic anions across the plasma membrane. Four charged residues in the fifth cytoplasmic loop (CL5) connecting transmembrane helix 9 (TM9) to TM10 are critical for stable expression of MRP1 at the plasma membrane. Thus Ala substitution of Lys(513), Lys(516), Glu(521), and Glu(535) all cause misfolding of MRP1 and target the protein for proteasome-mediated degradation. Of four chemical chaperones tested, 4-phenylbutyric acid (4-PBA) was the most effective at restoring expression of MRP1 mutants K513A, K516A, E521A, and E535A. However, although 4-PBA treatment of K513A resulted in wild-type protein levels (and activity), the same treatment had little or no effect on the expression of K516A. On the other hand, 4-PBA treatment allowed both E521A and E535A to exit the endoplasmic reticulum and be stably expressed at the plasma membrane. However, the 4-PBA-rescued E535A mutant exhibited decreased transport activity associated with reduced substrate affinity and conformational changes in both halves of the transporter. By contrast, E521A exhibited reduced transport activity associated with alterations in the mutant interactions with ATP as well as a distinct conformational change in the COOH-proximal half of MRP1. These findings illustrate the critical and complex role of CL5 for stable expression of MRP1 at the plasma membrane and more specifically show the differential importance of Glu(521) and Glu(535) in interdomain interactions required for proper folding and assembly of MRP1 into a fully transport competent native structure.  相似文献   

4.
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-binding cassette transporter that confers resistance to drugs and mediates the transport of organic anions. MRP1 has a core structure of two membrane spanning domains (MSDs) each followed by a nucleotide binding domain. This core structure is preceded by a third MSD with five transmembrane (TM) helices, whereas MSD2 and MSD3 each contain six TM helices. We investigated the consequences of Ala substitution of 18 Pro residues in both the non-membrane and TM regions of MSD2 and MSD3 on MRP1 expression and organic anion transport function. All MRP1-Pro mutants except P1113A were expressed in human embryonic kidney cells at levels comparable with wild-type MRP1. In addition, five mutants containing substitutions of Pro residues in or proximal to the TM helices of MSD2 (TM6-Pro(343), TM8-Pro(448), TM10-Pro(557), and TM11-Pro(595)) and MSD3 (TM14-Pro(1088)) exhibited significantly reduced transport of five organic anion substrates. In contrast, mutation of Pro(1150) in the cytoplasmic loop (CL7) linking TM15 to TM16 caused a substantial increase in 17beta-estradiol-17-beta-(D-glucuronide) and methotrexate transport, whereas transport of other organic anions was reduced or unchanged. Significant substrate-specific changes in the ATP dependence of transport and binding by the P1150A mutant were also observed. Our findings demonstrate the importance of TM6, TM8, TM10, TM11, and TM14 in MRP1 transport function and suggest that CL7 may play a differential role in coupling the activity of the nucleotide binding domains to the translocation of different substrates across the membrane.  相似文献   

5.
We describe an "inverting basket" model for transport in the erythrocyte anion exchanger, AE1. The inverting basket is formed by the side chains of three putative key residues, two positively (Lys 826 and Arg 730) and one negatively (Glu 681) charged residue. We have tentatively chosen seven transmembrane helices, TM1, TM2, TM4, TM8, TM10, TM12 and TM13 to form a conical channel using the well-established Glu 681 of TM8 and candidates Lys 826 and Arg 730 of TM12-13 and TM10, respectively, to form the inverting basket. We assume that these residues bind to an anion and shift from outward facing (C(o)) to inward facing (C(i)) conformation without significant backbone movements to transport an anion across the membrane. The transition of the complex (residues and ion) from outward facing (C(o)) to inward facing (C(i)) constitutes one "basket" inversion. The barrier to inversion is composed of two major components: that of the anhydrous complex, which we refer to as a steric energy barrier and a dehydration effect due to the removal of charges in the complex from water in the channel. The steric barrier is dependent on the side chain charge and configuration and on the ion charge and size. The dehydration effect, for our model, ameliorates the steric barrier, in the case of the empty complex but less so for the monovalent and divalent ions. We conclude, that it is possible for a seven-helix bundle to have a steric barrier to basket inversion, but that hydration effects in thin hydrophobic barrier models may be more complex than usually envisioned.  相似文献   

6.
The 190 kDa multidrug resistance protein 1 (MRP1; ABCC1) is comprised of three membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs) configured MSD1-MSD2-NBD1-MSD3-NBD2. MRP1 overexpression in tumor cells results in an ATP-dependent efflux of many oncolytic agents and arsenic and antimony oxyanions. MRP1 also transports GSSG and GSH as well as conjugated organic anions, including leukotriene C(4) and 17beta-estradiol 17-(beta-D-glucuronide) and certain xenobiotics in association with GSH. Previous studies have shown that portions of MSD1 and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. In the present study, Cys residues at positions 43, 49, 85, 148, and 190 in MSD1 and positions 208 and 265 in CL3 were mutated to Ala and Ser, and the effects on protein expression, plasma membrane localization, trypsin sensitivity, organic anion transport, and drug resistance properties were investigated. Confocal microscopy showed that 11 of 14 mutants displayed significant levels of nonplasma membrane-associated MRP1. Most mutant proteins were also more resistant to trypsin proteolysis than wild-type MRP1. All Cys mutants transported organic anions (0.5-1.5-fold wild-type MRP1 activity), and cells expressing Ser-substituted but not Ala-substituted Cys43 and Cys265 MRP1 mutants exhibited a 2.5-fold decrease and a 3-fold increase in arsenite resistance, respectively; Cys43Ser MRP1 also conferred lower levels of vincristine resistance. These results indicate that certain Cys residues in the NH(2) proximal region of MRP1 can be important for its structure and selected transport activities.  相似文献   

7.
The multidrug resistance protein, MRP1, is a clinically important ATP-binding cassette transporter in which the three membrane-spanning domains (MSDs), which contain up to 17 transmembrane (TM) helices, and two nucleotide binding domains (NBDs) are configured MSD1-MSD2-NBD1-MSD3-NBD2. In tumor cells, MRP1 confers resistance to a broad spectrum of drugs, but in normal cells, it functions as a primary active transporter of organic anions such as leukotriene C(4) and 17beta-estradiol 17beta-(D-glucuronide). We have previously shown that mutation of TM17-Trp(1246) eliminates 17beta-estradiol 17beta-(D-glucuronide) transport and drug resistance conferred by MRP1 while leaving leukotriene C(4) transport intact. By mutating the 11 remaining Trp residues that are in predicted TM segments of MRP1, we have now determined that five of them are also major determinants of MRP1 function. Ala substitution of three of these residues, Trp(445) (TM8), Trp(553) (TM10), and Trp(1198) (TM16), eliminated or substantially reduced transport levels of five organic anion substrates of MRP1. In contrast, Ala substitutions of Trp(361) (TM7) and Trp(459) (TM9) caused a more moderate and substrate-selective reduction in MRP1 function. More conservative substitutions (Tyr and Phe) of the Trp(445), Trp(553), and Trp(1198) mutants resulted in substrate selective retention of transport in some cases (Trp(445) and Trp(1198)) but not others (Trp(553)). Our findings suggest that the bulky polar aromatic indole side chain of each of these five Trp residues contributes significantly to the transport activity and substrate specificity of MRP1.  相似文献   

8.
Human multidrug resistance protein 1 (MRP1) confers resistance to many chemotherapeutic agents and transports diverse conjugated organic anions. We previously demonstrated that Glu1089 in transmembrane (TM) 14 is critical for the protein to confer anthracycline resistance. We have now assessed the functional importance of all polar and charged amino acids in this TM helix. Asn1100, Ser1097, and Lys1092, which are all predicted to be on the same face of the helix as to Glu1089, are involved in determining the substrate specificity of the protein. Notably, elimination of the positively charged side chain of Lys1092, increased resistance to the cationic drugs vincristine and doxorubicin, but not the electroneutral drug etoposide (VP-16). In addition, mutations S1097A and N1100A selectively decreased transport of 17beta-estradiol 17-(beta-d-glucuronide) (E217betaG) but not cysteinyl leukotriene 4 (LTC4), demonstrating the importance of multiple residues in this helix in determining substrate specificity. In contrast, mutations of Asp1084 that eliminate the carboxylate side chain markedly decreased resistance to all drugs tested, as well as transport of both E217betaG and LTC4, despite the fact that LTC4 binding was unaffected. We show that these mutations prevent the ATP-dependent transition of the protein from a high to low affinity substrate binding state and drastically diminish ADP trapping at nucleotide binding domain 2. Based on results presented here and crystal structures of prokaryotic ATP binding cassette transporters, Asp1084 may be critical for interaction between the cytoplasmic loop connecting TM13 and TM14 and a region of nucleotide binding domain 2 between the conserved Walker A and ABC signature motifs.  相似文献   

9.
Multidrurg resistance-associated protein 2 (MRP2)/canalicular multispecific organic anion transporter (cMOAT) is involved in the ATP-dependent export of organic anions across the bile canalicular membrane. To identify functional amino acid residues that play essential roles in the substrate transport, each of 13 basic residues around transmembrane regions (TMs) 6-17 were replaced with alanine. Wild type and mutant proteins were expressed in COS-7 cells, and the transport activity was measured as the excretion of glutathione-methylfluorescein. Four mutants, K324A (TM6), K483A (TM9), R1210A (TM16), and R1257A (TM17), showed decreased transport activity, and another mutant, K578A (TM11), showed decreased protein expression. These five mutants were normally delivered to the cell surface similar to the other fully active mutants and wild type MRP2. The importance of TM6, TM16, and TM17 in the transport function of MRP2 is consistent with the previous observation indicating the importance of the corresponding TM1, TM11, and TM12 on P-glycoprotein (Loo, T. W., and Clarke, D. M. (1999) J. Biol. Chem. 274, 35388-35392). Another observation that MRP2 inhibitor, cyclosporine A, failed to inhibit R1230A specifically, indicated the existence of its binding site within TM16.  相似文献   

10.
Westlake CJ  Qian YM  Gao M  Vasa M  Cole SP  Deeley RG 《Biochemistry》2003,42(48):14099-14113
Multidrug resistance protein (MRP) 1 is a member of the ABCC branch of the ATP binding cassette (ABC) transporter superfamily that can confer resistance to natural product chemotherapeutic drugs and transport a variety of conjugated organic anions, as well as some unconjugated compounds in a glutathione- (GSH-) dependent manner. In addition to the two tandemly repeated polytopic membrane-spanning domains (MSDs) typical of ABC transporters, MRP1 and its homologues MRP2, -3, -6, and -7 contain a third NH(2)-terminal MSD. The cytoplasmic loop (CL3) connecting this MSD, but apparently not the MSD itself, is required for MRP1 leukotriene C(4) (LTC(4)) transport activity, substrate binding and appropriate trafficking of the protein to the basolateral membrane. We have used a baculovirus dual-expression system to produce various functionally complementing fragments of MRP1 in insect Sf21 cells to precisely define the region in CL3 that is required for activity and substrate binding. Using a parallel approach in polarized MDCK-I cells, we have also defined the region of CL3 that is required for basolateral trafficking. The CL3 NH(2)- and COOH-proximal functional boundaries have been identified as Cys(208) and Asn(260), respectively. Cys(208) also corresponds to the NH(2)-proximal boundary of the region required for basolateral trafficking in MDCK-I cells. However, additional residues downstream of the CL3 COOH-proximal functional boundary extending to Lys(270) were found to be important for basolateral localization. Finally, we show that regions in CL3 necessary for LTC(4) binding and transport are also required for binding of the photoactivatable GSH derivative azidophenacyl-GSH.  相似文献   

11.
Zhang DW  Nunoya K  Vasa M  Gu HM  Theis A  Cole SP  Deeley RG 《Biochemistry》2004,43(29):9413-9425
Human multidrug resistance protein 1 (MRP1) is an ATP binding cassette (ABC) transporter that confers resistance to many natural product chemotherapeutic agents and can transport structurally diverse conjugated organic anions. MRP1 has three polytopic transmembrane domains (TMDs) and a total of 17 TM helices. Photolabeling and mutagenesis studies of MRP1 indicate that TM11, the last helix in the second TMD, may form part of the protein's substrate binding pocket. We have demonstrated that certain polar residues within a number of TM helices, including Arg(593) in TM11, are determinants of MRP1 substrate specificity or overall activity. We have now extended these analyses to assess the functional consequences of mutating the remaining seven polar residues within and near TM11. Mutations Q580A, T581A, and S585A in the predicted outer leaflet region of the helix had no detectable effect on function, while mutation of three residues close to the membrane/cytoplasm interface altered substrate specificity. Two of these mutations affected only drug resistance. N597A increased and decreased resistance to vincristine and VP-16, respectively, while S605A decreased resistance to vincristine, VP-16 and doxorubicin. The third, S604A, selectively increased 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) transport. In contrast, elimination of the polar character of the residue at position 590 (Asn in the wild-type protein) uniformly impaired the ability of MRP1 to transport potential physiological substrates and to confer resistance to three different classes of natural product drugs. Kinetic and photolabeling studies revealed that mutation N590A not only decreased the affinity of MRP1 for cysteinyl leukotriene 4 (LTC(4)) but also substantially reduced the binding of ATP to nucleotide binding domain 1 (NBD1). Thus, polar interactions involving residues in TM11 influence not only the substrate specificity of MRP1 but also an early step in the proposed catalytic cycle of the protein.  相似文献   

12.
Monocarboxylate transporters MCT1-MCT4 require basigin (CD147) or embigin (gp70), ancillary proteins with a glutamate residue in their single transmembrane (TM) domain, for plasma membrane (PM) expression and activity. Here we use site-directed mutagenesis and expression in COS cells or Xenopus oocytes to investigate whether this glutamate (Glu218 in basigin) may charge-pair with a positively charged TM-residue of MCT1. Such residues were predicted using a new molecular model of MCT1 based upon the published structure of the E. coli glycerol-3-phosphate transporter. No evidence was obtained for Arg306 (TM 8) of MCT1 and Glu218 of basigin forming a charge-pair; indeed E218Q-basigin could replace WT-basigin, although E218R-basigin was inactive. No PM expression of R306E-MCT1 or D302R-MCT1 was observed but D302R/R306D-MCT1 reached the PM, as did R306K-MCT1. However, both were catalytically inactive suggesting that Arg306 and Asp302 form a charge-pair in either orientation, but their precise geometry is essential for catalytic activity. Mutation of Arg86 to Glu or Gln within TM3 of MCT1 had no effect on plasma membrane expression or activity of MCT1. However, unlike WT-MCT1, these mutants enabled expression of E218R-basigin at the plasma membrane of COS cells. We propose that TM3 of MCT1 lies alongside the TM of basigin with Arg86 adjacent to Glu218 of basigin. Only when both these residues are positively charged (E218R-basigin with WT-MCT1) is this interaction prevented; all other residue pairings at these positions may be accommodated by charge-pairing or stabilization of unionized residues through hydrogen bonding or local distortion of the helical structure.  相似文献   

13.
Multidrug resistance protein 1 (MRP1) and P-glycoprotein, which are ATP-dependent multidrug efflux pumps and involved in multidrug resistance of tumor cells, are members of the ATP binding cassette proteins and contain two nucleotide-binding folds (NBFs). P-glycoprotein hydrolyzes ATP at both NBFs, and vanadate-induced nucleotide trapping occurs at both NBFs. We examined vanadate-induced nucleotide trapping in MRP1 stably expressed in KB cell membrane by using 8-azido-[alpha-(32)P]ATP. Vanadate-induced nucleotide trapping in MRP1 was found to be stimulated by reduced glutathione, glutathione disulfide, and etoposide and to be synergistically stimulated by the presence of etoposide and either glutathione. These results suggest that glutathione and etoposide interact with MRP1 at different sites and that those bindings cooperatively stimulate the nucleotide trapping. Mild trypsin digestion of MRP1 revealed that vanadate-induced nucleotide trapping mainly occurs at NBF2. Our results suggest that the two NBFs of MRP1 might be functionally nonequivalent.  相似文献   

14.
The S'1 binding pocket of carboxypeptidase Y is hydrophobic, spacious, and open to solvent, and the enzyme exhibits a preference for hydrophobic P'1 amino acid residues. Leu272 and Ser297, situated at the rim of the pocket, and Leu267, slightly further away, have been substituted by site-directed mutagenesis. The mutant enzymes have been characterized kinetically with respect to their P'1 substrate preferences using the substrate series FA-Ala-Xaa-OH (Xaa = Leu, Glu, Lys, or Arg) and FA-Phe-Xaa-OH (Xaa = Ala, Val, or Leu). The results reveal that hydrophobic P'1 residues bind in the vicinity of residue 272 while positively charged P'1 residues interact with Ser297. Introduction of Asp or Glu at position 267 greatly reduced the activity toward hydrophobic P'1 residues (Leu) and increased the activity two- to three-fold for the hydrolysis of substrates with Lys or Arg in P'1. Negatively charged substituents at position 272 reduced the activity toward hydrophobic P'1 residues even more, but without increasing the activity toward positively charged P'1 residues. The mutant enzyme L267D + L272D was found to have a preference for substrates with C-terminal basic amino acid residues. The opposite situation, where the positively charged Lys or Arg were introduced at one of the positions 267, 272, or 297, did not increase the rather low activity toward substrates with Glu in the P'1 position but greatly reduced the activity toward substrates with C-terminal Lys or Arg due to electrostatic repulsion. The characterized mutant enzymes exhibit various specificities, which may be useful in C-terminal amino acid sequence determinations.  相似文献   

15.
Substrates transported by the 190-kDa multidrug resistance protein 1 (MRP1) (ABCC1) include endogenous organic anions such as the cysteinyl leukotriene C(4). In addition, MRP1 confers resistance against various anticancer drugs by reducing intracellular accumulation by co-export of drug with reduced GSH. We have examined the properties of LY475776, an intrinsically photoactivable MRP1-specific tricyclic isoxazole modulator that inhibits leukotriene C(4) transport by this protein in a GSH-dependent manner. We show that [125I]LY475776 photolabeling of MRP1 requires GSH but is also supported by several non-reducing GSH derivatives and peptide analogs. Limited proteolysis revealed that [(125)I]LY475776 labeling was confined to the 75-kDa COOH-proximal half of MRP1. More extensive proteolysis generated two major 125I-labeled fragments of approximately 56 and approximately 41 kDa, and immunoblotting with regionally directed antibodies showed that these fragments correspond to amino acids approximately 1045-1531 and approximately 1150-1531, respectively. However, an approximately 33-kDa COOH-terminal immunoreactive fragment was not labeled, inferring that the major [125I]LY475776-labeling site resides approximately between amino acids 1150-1250. This region encompasses transmembrane (TM) segments 16 and 17 at the COOH-proximal end of the third membrane spanning domain of the protein. [125I]LY475776 labeling of mutant MRP1 molecules with substitutions of Trp(1246) in TM17 were reduced >80% compared with wild-type MRP1, confirming that TM17 is important for LY475776 binding. Finally, vanadate-induced trapping of ADP inhibited [125I]LY475776 labeling, suggesting that ATP hydrolysis causes a conformational change in MRP1 that reduces the affinity of the protein for this inhibitor.  相似文献   

16.
The multidrug resistance protein, MRP1 (ABCC1), is an ATP-binding cassette transporter that confers resistance to chemotherapeutic agents. MRP1 also mediates transport of organic anions such as leukotriene C(4) (LTC(4)), 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), estrone 3-sulfate, methotrexate (MTX), and GSH. We replaced three charged amino acids, Lys(332), His(335), and Asp(336), predicted to be in the sixth transmembrane (TM6) helix of MRP1 with neutral and oppositely charged amino acids and determined the effect on substrate specificity and transport activity. All mutants were expressed in transfected human embryonic kidney cells at levels comparable with wild-type MRP1, and confocal microscopy showed that they were correctly routed to the plasma membrane. Vesicular transport studies revealed that the MRP1-Lys(332) mutants had lost the ability to transport LTC(4), and GSH transport was reduced; whereas E(2)17betaG, estrone 3-sulfate, and MTX transport were unaffected. E(2)17betaG transport was not inhibited by LTC(4) and could not be photolabeled with [(3)H]LTC(4), indicating that the MRP1-Lys(332) mutants no longer bound this substrate. Substitutions of MRP1-His(335) also selectively diminished LTC(4) transport and photolabeling but to a lesser extent. Kinetic analyses showed that V(max) (LTC(4)) of these mutants was decreased but K(m) was unchanged. In contrast to the selective loss of LTC(4) transport in the Lys(332) and His(335) mutants, the MRP1-Asp(336) mutants no longer transported LTC(4), E(2)17betaG, estrone 3-sulfate, or GSH, and transport of MTX was reduced by >50%. Lys(332), His(335), and Asp(336) of TM6 are predicted to be in the outer leaflet of the membrane and are all capable of forming intrahelical and interhelical ion pairs and hydrogen bonds. The importance of Lys(332) and His(335) in determining substrate specificity and of Asp(336) in overall transport activity suggests that such interactions are critical for the binding and transport of LTC(4) and other substrates of MRP1.  相似文献   

17.
Uncoupling proteins (UCP) are known to transport anions, such as Cl-, in addition to H+ transport. Although H+ transport by UCP is clearly involved in thermogenesis, the mechanism of its anion transport is not clearly understood. In this study, we examined the anion channel characteristics of the six individual helical transmembrane (TM) domains of the human UCP2. The second TM domain peptide (TM2) forms multi-state channels by assemblies of conductive oligomers. Furthermore, the TM2 exhibited voltage-dependent anion channels with properties comparable to those of UCP1 chloride channel. However, the other five TM peptides did not form UCP1-like channels. Moreover, an analog of TM2 in which two Arg residues were substituted by Ala residues did not form stable channels, implying the significance of Arg residues for anion transport. These results suggest that the anion channel structure of UCP2 protein is oligomeric and the second TM domain is essential for the voltage-dependence of this anion channel.  相似文献   

18.
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.  相似文献   

19.
Wohlrab H  Annese V  Haefele A 《Biochemistry》2002,41(9):3254-3261
The phosphate transport protein (PTP) catalyzes the proton cotransport of phosphate into the mitochondrial matrix. It functions as a homodimer, and thus residues of the phosphate and proton pores are somewhat scattered throughout the primary sequence. With 71 new single mutation per subunit PTPs, all its hydroxyl, basic, and acidic residues have now been replaced to identify these essential residues. We assayed the initial rate of pH gradient-dependent unidirectional phosphate transport activity and the liposome incorporation efficiency (LIE) of these mutants. Single mutations of Thr79, Tyr83, Lys90, Tyr94, and Lys98 inactivate transport. The spacings between these residues imply that they are located along the same face of transmembrane (TM) helix B, requiring an extension of its current model C-terminal domain by 10 residues. This extension superimposes very well onto the shorter bovine PTP helix B, leaving a 15-residue hydrophobic extension of the yeast helix B N-terminus. This is similar to the helix D and F regions of the yeast PTP. Only one transport-inhibiting mutation is located within loops: Ser158Thr in the matrix loop between helices C and D. All other transport-inhibiting mutations are located within the TM helices. Mutations that yield LIEs of <6% are all, except for four, within helices. The four exceptions are Tyr12Ala near the PTP N-terminus and Arg159Ala, Glu163Gln, and Glu164Gln in the loop between helices C and D. The PTP C-terminal segment beyond Thr214 at the N-terminus of helix E has 11 mutations with LIEs >20% and none with LIE <6%. Mutations with LIEs >20% are located near the ends of all the TM helices except TM helix D. Only a few mutations alter PTP structure (LIE) and also affect PTP transport activity. A novel observation is that Ser4Ala blocks the formation of PTP bacterial inclusion bodies.  相似文献   

20.
Plasma membrane monoamine transporter (PMAT or ENT4) is a newly cloned transporter assigned to the equilibrative nucleoside transporter (ENT) family (SLC29). Unlike ENT1-3, PMAT mainly functions as a polyspecific organic cation transporter. In this study, we investigated the molecular mechanisms underlying the unique substrate selectivity of PMAT. By constructing chimeras between human PMAT and ENT1, we showed that a chimera consisting of transmembrane domains (TM) 1-6 of PMAT and TM7-11 of hENT1 behaved like PMAT, transporting 1-methyl-4-phenylpyridinium (MPP+, an organic cation) but not uridine (a nucleoside), suggesting that TM1-6 contains critical domains responsible for substrate recognition. To identify residues important for the cation selectivity of PMAT, 10 negatively charged residues were chosen and substituted with alanine. Five of the alanine mutants retained PMAT activity, and four were non-functional due to impaired targeting to the plasma membrane. However, alanine substitution at Glu(206) in TM5 abolished PMAT activity without affecting cell surface expression. Eliminating the charge at Glu(206) (E206Q) resulted in loss of organic cation transport activity, whereas conserving the negative charge (E206D) restored transporter function. Interestingly, mutant E206Q, which possesses the equivalent residue in ENT1, gained uridine transport activity. Thr(220), another residue in TM5, also showed an effect on PMAT activity. Helical wheel analysis of TM5 revealed a distinct amphipathic pattern with Glu(206) and Thr(220) clustered in the center of the hydrophilic face. In summary, our results suggest that Glu(206) functions as a critical charge sensor for cationic substrates and TM5 forms part of the substrate permeation pathway in PMAT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号