首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of cold stress on the ganglioside fatty acid composition and sialic acid content of brain subcellular fractions and homogenate of rats was studied, the animals were kept in a cold room with 12h light-dark cycles at 3 and 10 degrees C for 2 weeks. (1) The rat brain homogenate, synaptosomes and myelin of rats exposed to 3 degrees C contained significantly higher amounts of ganglioside-bound sialic acid per mg of protein than these fractions of control rats kept at 23 degrees C; the differences were less pronounced in rats exposed to 10 degrees C. (2) A small, but significant, diminution of relative palmitic acid content and an increase of stearic acid content was found to take place in gangliosides from rat brain synaptosomes, synaptosomal plasma membranes and homogenate as a result of the exposure of animals to 3 degrees C and to a lesser extent to 10 degrees C. (3) The content of unsaturated fatty acids in gangliosides from brain subcellular fractions was approximately the same in cold exposed and control rats.  相似文献   

2.
Liver and brain mitochondrial ATPase activities in rats exposed to high ambient temperature. Acta physiol. pol., 1985, 36 (3): 185-192. Rat liver and brain mitochondrial ATPase activities were investigated after a single exposure (6 h) of the animals to temperatures of 21 degrees, 28 degrees and 37 degrees C. An increase of ATPase activity stimulated by Ca++ ions was noted in the mitochondrial fractions of the liver at 28 degrees C and of the brain at 28 degrees and 37 degrees C. Only in liver mitochondria of rats exposed to 28 degrees C a depression of Mg++-ATPase activity was found.  相似文献   

3.
To determine the effect of hypergravity acclimation on thermoregulation, core temperature (Tc), tail temperature (Tt), and O2 consumption (VO2) were measured in control rats (raised at 1 G) and in rats acclimated to 2.1 G. When the animals were exposed to a low ambient temperature of 9 degrees C, concurrently with a hypergravic field of 2.1 G, Tc of rats raised at 1 G fell markedly by approximately 6 degrees C (to 30.8 +/- 0.6 degrees C) while that of the rats raised at 2.1 G remained relatively constant (falling only approximately 1 degree C to 36.4 +/- 0.3 degrees C). Thus prior acclimation to a 2.1-G field enabled rats to maintain Tc when cold exposed in a 2.1-G field. To maintain Tc, thermogenic mechanisms were successfully activated in the 2.1-G-acclimated rats as shown by measurements of VO2. In contrast, VO2 measurements showed that rats reared at 1 G and then cold exposed at 2.1 G did not activate thermogenic mechanisms sufficiently to prevent a fall in Tc. In other experiments, rats acclimated to either 1 or 2.1 G were found to lack the ability to maintain their Tc when exposed to a 5.8-G field or when exposed to prolonged cold exposure at 1 G. Results are interpreted as showing that when placed in a 2.1-G field, rats acclimated to 2.1 G can more closely maintain their Tc near 37 degrees C when cold exposed than can rats acclimated to 1 G. However, this enhanced regulatory ability of 2.1-G-acclimated rats over 1.0-G-acclimated rats is restricted to 2.1-G fields and is not observed in 1.0- and 5.8-G fields.  相似文献   

4.
1. In rats acclimated to 23 degrees C (RT rats) or 5 degrees C (CA rats), core temperature (Tc), tail temperature (Tt) and oxygen consumption (VO2) were measured during exposure to a hypergravic field. 2. Rats were exposed for 5.5 h to a 3 g field while ambient temperature (Ta) was varied. For the first 2 h, Ta was 25 degrees C; then Ta was raised to 34 degrees C for 1.5 h. During this period of warm exposure, Tc increased 4 degrees C in both RT and CA rats. Finally, Ta was returned to 25 degrees C for 2 h, and Tc decreased toward the levels measured prior to warm exposure. 3. In a second experiment at 3 g, RT and CA rats were exposed to cold (12 degrees C) after two hours at 25 degrees C. During the one hour cold exposure, Tc fell 1.5 degrees C in RT and 0.5 degree C in CA rats. After cold exposure, when ambient temperature was again 25 degrees C, Tc of RT and CA rats returned toward the levels measured prior to the thermal disturbance. 4. Rats appear to regulate their temperature, albeit at a lower level, in a 3 g field.  相似文献   

5.
This study was designed to determine the changes that occur in the thermoregulatory ability of the immature rat repeatedly exposed to low-level microwave radiation. Beginning at 6-7 days of age, previously untreated rats were exposed to 2,450-MHz continuous-wave microwaves at a power density of 5 mW/cm2 for 10 days (4 h/day). Microwave and sham (control) exposures were conducted at ambient temperatures (Ta) which represent different levels of cold stress for the immature rat (ie, "exposure" Ta = 20 and 30 degrees C). Physiological tests were conducted at 5-6 and 16-17 days of age, in the absence of microwaves, to determine pre- and postexposure responses, respectively. Measurements of metabolic rate, colonic temperature, and tail skin temperature were made at "test" Ta = 25.0, 30.0, 32.5, and 35.0 degrees C. Mean growth rates were lower for rats exposed to Ta = 20 degrees C than for those exposed to Ta = 30 degrees C, but microwave exposure exerted no effect at either exposure Ta. Metabolic rates and body temperatures of all exposure groups were similar to values for untreated animals at test Ta of 32.5 degrees C and 35.0 degrees C. Colonic temperatures of rats repeatedly exposed to sham or microwave conditions at exposure Ta = 20 degrees C or to sham conditions at exposure Ta = 30 degrees C were approximately 1 degrees C below the level for untreated animals at test Ta of 25.0 degrees C and 30.0 degrees C. However, when the exposure Ta was warmer, rats exhibited a higher colonic temperature at these cold test Ta, indicating that the effectiveness of low-level microwave treatment to alter thermoregulatory responses depends on the magnitude of the cold stress.  相似文献   

6.
Endocrine and thermoregulatory responses were studied in male rats exposed to heat (32.5 +/- 0.1 degrees C) from acclimation temperatures of either 24.5 +/- 0.1 degrees C or 29.2 +/- 0.1 degrees C. After 1 hr in the heat, evaporative water loss and tail skin temperature changes in the 24.5 degrees C acclimated rats were greater than in the 29.2 degrees C acclimated rats; both groups displayed similar changes in metabolic rate and rectal temperature. At the respective acclimation temperatures, 29.2 degrees C rats displayed lowered plasma thyroid hormones, elevated beta-endorphin-like immunoreactivity (beta-END-LI) in the plasma, neurointermediate and anterior lobes of the pituitary gland, and no change in plasma corticosterone levels compared to 24.5 degrees C rats. After exposure to 32.5 degrees C for 1 hr, both groups of rats maintained similar plasma corticosterone levels; however, only the 24.5 degrees C group increased plasma thyroxine and beta-END-LI. These data suggest that beta-endorphin may be involved in body temperature regulation during acclimation to elevated environmental temperatures.  相似文献   

7.
Rats exposed to acute cold (4 degrees C for 2 h), chronic cold (4 degrees C), and chronic-intermittent cold (4 degrees C for 2 h daily) were killed after 1, 2, 3, 4, and 10 days of cold exposure. The control group was maintained at 25 degrees C. In each animal, the plasma concentration of thyrotropine (THS), triiodothyronine (T3), and thyroxine (T4) was determined by radioimmunoassay. At the initial time of exposure, elevations in TSH, T3, and T4 were observed in the rats in each experimental group. However, on the 10th day, in rats exposed to chronic-intermittent cold, TSH, T3, and T4 decreased to values lower than the control values. In animals exposed to acute cold as well as to chronic cold no differences were found, with respect to the controls, in TSH and T4. In rats exposed to acute cold for 10 days, the T3 value was lower than the control value; however, in animals exposed to chronic cold, T3 was same as that in the controls. The results indicate that, in the rat, exposure to chronic-intermittent cold produces an inhibition in the secretion of TSH and thyroid hormones.  相似文献   

8.
The physiological changes in male rats during acclimation were studied following direct or stepwise exposure to heat (32.5 degrees C) in a controlled-environment room. The animals were exposed to each temperature for 10 days beginning at 24.5 degrees C and returning to 24.5 degrees C in the reverse order of initial exposure. Relative humidity of 50 +/- 2% and a 12-h light-dark photoperiod (light from 0900 to 2100 h) were maintained. Physiological changes in metabolic rate (MR), evaporative water loss (EWL), plasma corticosterone, body water turnover, and food and water intake were measured. The results indicate a significantly (P less than 0.001) elevated plasma corticosterone and MR in rats exposed directly to heat from control temperature (24.5 degrees C) but not in those animals exposed stepwise via 29.0 degrees C. All kinetic parameters of water pool changed (P less than 0.01) on direct exposure to heat, whereas rats exposed in a stepwise manner increased only pool turnover. In addition, exposure to experimental temperatures resulted in reduced (P less than 0.05) relative food intake and increased (P less than 0.05) water intake. Compared with the control condition of 24.5 degrees C, EWL was significantly (P less than 0.05) elevated when the animals were exposed either directly or in a stepwise fashion to 32.5 degrees C. These data suggest that the response to elevated temperatures is influenced by the temperature to which the rat is acclimated.  相似文献   

9.
Effects of hypoxia and cold acclimation on thermoregulation in the rat.   总被引:1,自引:0,他引:1  
The effects of hypoxia (inspired O2 fraction = 0.12) on thermoregulation and on the different sources of thermogenesis were studied in rats before and after periods of 1-4 wk of cold acclimation. Measurements of metabolic rate (VO2) and body temperature (Tb) were made at 5-min intervals, and shivering activity was recorded continuously in groups of rats subjected to three protocols. In protocol 1, rats were exposed to normoxia to an ambient temperature (Ta) of 5 degrees C for 2 h. In protocol 2, at Ta of 5 degrees C, rats were exposed for 30 min to normoxia, then for 45 min to hypoxia, and finally for 30 min to normoxia. In protocol 3, in the non-cold-acclimated (NCA) rats, Ta was decreased from 30 to 5 degrees C in steps of 5 degrees C and of 30-min duration while in cold-acclimated (CA) rats at 5 degrees C for 4-wk, Ta was increased from 5 to 30 degrees C in steps of 5 degrees C and of 30-min duration. Recordings were made in normoxia and in hypoxia on different days in the same animals. The results showed that 1) in NCA rats, cold exposure in normoxia induced increases in VO2 and shivering that were proportional to the decrease in Ta; 2) in CA rats in normoxia, for a given Ta, VO2 and Tb were higher than in NCA rats, whereas shivering was generally lower; and 3) in both NCA and CA rats, hypoxia induced a transient decrease in shivering and a sustained decrease in nonshivering thermogenesis associated with a marked decrease in Tb that was about the same in NCA and CA rats. We speculate that hypoxia acts on Tb control to produce a general inhibition of thermogenesis. Nonshivering thermogenesis is markedly sensitive to hypoxia, especially demonstrable in CA rats; a recovery or even an increase in shivering can compensate for the decrease in nonshivering thermogenesis.  相似文献   

10.
The combined stress of acute immobilization (IM) at high and low ambient temperature has been used to determine its influence on adrenal catecholamine (CA) content assassed histofluorimetrically in fed and 24 hour fasted rats. The general course of changes obtained after the arrangement of adrenal strips deriving from the adrenals of rats exposed to cold and IM stress (CIMS) at +10 degrees C to -25 degrees C during the different time fragments presented the adrenal CA depletion events followed sometimes by the adrenal CA content increase after the longer stress exposure or/and stronger CIMS and WIMS conditions. It was found that this depletion-stimulated increase of adrenal Ca synthesis rate had been accelerated in 24 h fasted rats compared to satiated ones exposed to the same stress conditions, especially after the CIMS exposure. Moreover the survival time duration at first lethal temperature (-5 degrees C and +45 degrees C) was significantly higher in fasted rats. The possible hypothalamic regulation of adrenal CA synthesis rate accordingly to the actual metabolism needs and beta-adrenoceptor sensitivity changes depending on satiety state have been discussed and the necessity of further investigations concerning the specificity of stress-induced metabolism changes in 24 h starved rats has been suggested.  相似文献   

11.
It has been shown that the same modifications on the composition of brown adipose tissue (BAT) which are normally induced following cold stimulation are also observed in hypophysectomized rats acclimated either at 28 degrees C or 15 degrees C. To test the possibility of BAT stimulation in hypophysectomized rats, we have determined some enzymatic activities known to modulate the energy supply to that organ. Seven week old Long-Evans rats were hypophysectomized. Three weeks later, they were exposed to either 28 degrees C or 15 degrees C ambient temperature for five or six weeks. Hypophysectomized rats were compared to age matched or weight matched controls. Total lipoprotein lipase activity (LPL) (triglyceride uptake) was enhanced in BAT of 28 degrees C hypophysectomized rats compared to controls. Cold acclimation led to a large increased activity. Total LPL activity was comparable in BAT of hypophysectomized and control rats. Total malic enzyme and glucose-6-phosphate dehydrogenase activities (in situ lipogenesis) were doubled in BAT of 28 degrees C hypophysectomized compared to controls. A large enhancement was observed in BAT of either 15 degrees C control or 15 degrees C hypophysectomized rats. Among the studied organs (liver, white adipose tissue, heart, BAT) hypophysectomy promotes the three enzyme activities only in BAT. These variations were discussed with relation to the effect of hypophysectomy on brown adipose tissue at 15 degrees C and 28 degrees C.  相似文献   

12.
1. In vivo fatty acid synthesis by brown adipose tissue was enhanced in rats exposed to cold (5 degrees C) or altitude (4300 m) for 7 days but was unaltered in rats exposed to heat (35 degrees C) for an equivalent period. In vivo fatty acid synthesis by white adipose tissue was depressed by cold exposure while altitude and heat exposure had no effect. 2. In vitro, CO2 production and lipid synthesis were elevated in brown adipose tissue from rats fasted for 4 days. Refeeding (4 days) such rats reversed these effects, leading to depressed values relative to those of control rats. In contrast, these metabolic events in white adipose tissue were decreased by fasting and increased compared to controls during subsequent refeeding.  相似文献   

13.
Ambient air temperatures (T(a)) of <6 degrees C or >29 degrees C have been shown to induce large changes in arterial blood pressure and heart rate in homeotherms. The present study was designed to investigate whether small incremental changes in T(a), such as those found in typical laboratory settings, would have an impact on blood pressure and other cardiovascular parameters in mice and rats. We predicted that small decreases in T(a) would impact the cardiovascular parameters of mice more than rats due to the increased thermogenic demands resulting from a greater surface area-to-volume ratio in mice relative to rats. Cardiovascular parameters were measured with radiotelemetry in mice and rats that were housed in temperature-controlled environments. The animals were exposed to different T(a) every 72 h, beginning at 30 degrees C and incrementally decreasing by 4 degrees C at each time interval to 18 degrees C and then incrementally increasing back up to 30 degrees C. As T(a) decreased, mean blood pressure, heart rate, and pulse pressure increased significantly for both mice (1.6 mmHg/ degrees C, 14.4 beats.min(-1). degrees C(-1), and 0.8 mmHg/ degrees C, respectively) and rats (1.2 mmHg/ degrees C, 8.1 beats.min(-1). degrees C(-1), and 0.8 mmHg/ degrees C, respectively). Thus small changes in T(a) significantly impact the cardiovascular parameters of both rats and mice, with mice demonstrating a greater sensitivity to these T(a) changes.  相似文献   

14.
After acclimating individually housed male rats to temperatures of either 24.5 +/- 0.1 or 29.2 +/- 0.1 degrees C for 14 days, randomly paired animals from each group were acutely exposed (3 h) in series to experimental temperatures between 18.0 and 34.5 degrees C in a controlled environment room. Relative humidity of 50 +/- 0.3% and a 12-h light-dark photoperiod (light from 0900 to 2100 h) were maintained. Metabolic rate (MR) and evaporative water loss (EWL) were-measured using an open-flow system; thermistors were used to measure the rectal (Tre) and tail skin (Tts) temperatures. MR was relatively constant over a temperature range of 22.2 to 27.0 degrees C for rats acclimated to 24.5 degrees C and 20.0 to 29.2 degrees C for rats acclimated to 29.2 degrees C. Above and below these ranges, MR for both groups was significantly (P less than 0.05) elevated. At their respective acclimation temperatures, the absolute Tre and Tts of 29.2 degrees C rats were maintained at an elevated level compared with 24.5 degrees C rats. Although EWL for both groups was relatively constant between 18.0 and 27.0 degrees C, 24.5 degrees C rats displayed higher EWL changes at most environmental temperatures above 27.0 degrees C. At 34.5 degrees C, 29.2 degrees C rats dissipated 26% more metabolic heat by evaporation compared with 24.5 degrees C rats. These data suggest that acclimation temperatures of rats affected the thermoneutral zone and alter the set-point temperature around which thermal responses are regulated.  相似文献   

15.
1. Exposure of rats to a temperature of 1 degree C resulted in a temporary decline in respiratory quotient to a minimum on the 4th day of exposure, with subsequent recovery. 2. Metabolism stabilized after 4-6 days of cold exposure. 3. Body composition was determined for control rats and rats exposed to 2 or 23 degrees C for 2 weeks. 4. Animals kept at 2 degrees C had a lower fat content than other groups, with a higher iodine value. 5. Mineral content indicated that bone growth continued during cold exposure.  相似文献   

16.
N-nitro-arginine methyl ester (L-NAME), an unspecific nitric oxide synthase inhibitor, was administered to individually caged Sprague-Dawley rats exposed to cold (18 degrees C) and thermoneutral (30 degrees C) environmental temperatures during the active phase of the animals' circadian cycle. Unrestrained rats were administered intraperitoneal injections of 100 mg x kg-1 L-NAME or 1 mL x kg-1 saline. Telemetry was used to measure abdominal temperature. On a separate occasion, metabolic rate and evaporative water loss were measured using indirect calorimetery, before and after the injection of 100 mg x kg-1 L-NAME, in rats exposed to the two environments. Injection of L-NAME had no significant effect on body temperature, metabolic rate, or evaporative water loss in rats exposed to the 30 degrees C environment. In the 18 degrees C environment, L-NAME injection caused a prolonged fall in body temperature ( F(1,12) = 17.43, P = 0.001) and a significant decrease in metabolic rate (Student's t test, P = 0.001) and evaporative water loss (one-sample t test, P = 0.04). Therefore, the effects that systemic injection of L-NAME has on body temperature are dependent on environmental temperature, with nitric oxide synthase inhibition seemingly preventing the metabolic component of cold defence.  相似文献   

17.
Increase in rat intestinal permeability to endotoxin during hyperthermia   总被引:1,自引:0,他引:1  
Victims of heat stroke exhibit several clinical features which are also encountered in endotoxaemia. In order to investigate these similarities hyperthermic rats were used to explore the possibility that high body temperature results in increased permeability of intestinal wall to endotoxin. 125I endotoxin was introduced into intestinal segments taken from non-heat exposed rats. The segments were then incubated at 37 degrees C or 45 degrees C. Intestinal segments from heat stressed rats were similarly prepared and incubated at 37 degrees C. Leakage of endotoxin from segments taken from heat stressed rats was three times greater than from those from non-heat stressed rats, as were the segments from non-heat stressed rats which were incubated at 45 degrees C. These results indicate that the intestinal membrane is damaged by heat and that an increase in outward leakage of microbial endotoxins from the gut then occurs. This might contribute to the pathophysiological picture of heatstroke.  相似文献   

18.
In a four-part study, we expand on our previous report that bulbospinal serotonin (5HT) neuronal activation occurs with 24 h of cold exposure. To characterize temporal aspects, rats were exposed to 3 degrees C or were maintained at 22 degrees C for 2, 8, 48, or 96 h (experiment 1) or for 15, 30, or 60 min (experiment 2). To ensure that cold-induced changes in 5HT activity were not due to disturbances in diurnal pattern, rats in experiment 3 were exposed to cold (8 h) during the dark cycle. To explore the hypothesis that cold-induced 5HT activation is part of a broad metabolic response that includes activation of the sympathetic nervous system, metabolically impaired (hypothyroid) rats were exposed to 8 degrees C in experiment 4. Significant increments in 5-hydroxyindoleacetic acid (SHIAA) concentration were evident by 60 min of cold exposure and existed at all later time points measured. These findings were most robust in spinal cord and rostral brainstem. Activation in spinal cord was also found when rats were exposed to 8 h of cold during the dark cycle, the active period for rats. In experiment 4, hypothyroid rats exhibited significantly greater norepinephrine excretion compared with control rats exposed to the same cold stimulus; this finding was accompanied by significantly greater increments in 5HIAA concentration in rostral brainstem and spinal cord of hypothyroid rats. In addition, significant elevations in tryptophan concentration were noted throughout the brainstem and spinal cord of cold-exposed, hypothyroid rats relative to room temperature, hypothyroid rats. This finding suggested that elevations in 5HIAA concentration in these rats were due to increases in precursor availability. The implications of these findings relative to autonomic and metabolic control are discussed.  相似文献   

19.
Interaction between exercise training and cold acclimation in rats   总被引:1,自引:0,他引:1  
Five groups of 10 rats were used. Group A included sedentary rats kept at 24 degrees C, group B exercised-trained rats and group C rats exposed at -15 degrees C for 2 h every day and kept at 24 degrees C for the remaining time. These 3 groups were kept on this regimen for 10 weeks. In addition group D was acclimated to cold (2 h.d-1 at -15 degrees C) for 6 weeks and subsequently deacclimated at 24 degrees C for 4 weeks. Group E was also acclimated to cold for 6 weeks and during the deacclimation, at 24 degrees C period which lasted 4 weeks, the animals were exercised 2 h per day. Following the 10 week experimental period all animals were sacrificed and DNA and protein content of the IBAT as well as its total mass were measured. The results show significant increases in the cold adapted group. Exercise training which had no effect on brown adipose tissue IBAT at room temperature, caused an accelerated reduction in weight, DNA and protein content of the BAT in rats previously acclimated to cold. In spite of this, the thermogenic response to noradrenaline was significantly enhanced in the group which exercised during the deacclimation period. It is suggested that tissues other than IBAT may explain this enhanced heat production capacity.  相似文献   

20.
1. A rapid unmasking of GDP binding sites on brown adipose tissue (BAT) mitochondria was observed when hamsters acclimatized to 28 degrees C were exposed to a temperature of 4 degrees C for 2 hr. 2. No rapid unmasking of GDP binding sites was observed when hamsters housed at 22 degrees C were briefly exposed to 4 degrees C. 3. The amount of GDP bound to BAT mitochondria from hamsters increased during 2 weeks of exposure to 4 degrees C, but did not change between 2 weeks and 30 days of cold exposure. 4. Incubation of mitochondria with 10 mM Mg2+ prior to the GDP binding assay increased the subsequent GDP binding to BAT mitochondria from hamsters housed at 28, 22 or 4 degrees C, albeit to different degrees. 5. The amount of GDP bound to uncoupling proteins isolated from untreated and Mg(2+)-treated mitochondria of hamsters and rats was measured. Scatchard analyses of the binding of GDP to purified uncoupling protein indicate that increases in the number of binding sites due to Mg2+ treatment of mitochondria do not change the affinity of the protein for GDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号