首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Therapeutic potential of vitamin D-binding protein   总被引:1,自引:0,他引:1  
Vitamin D-binding protein (DBP) is a multi-functional plasma protein with many important functions. These include transport of vitamin D metabolites, control of bone development, binding of fatty acids, sequestration of actin and a range of less-defined roles in modulating immune and inflammatory responses. Exploitation of the unique properties of DBP could enable the development of important therapeutic agents for the treatment of a variety of diseases.  相似文献   

3.
The vitamin D-binding protein in human serum (the group-specific component) is an alpha 2-globulin which is genetically polymorphic in all populations studied. Previous work (J. Svasti and B. H. Bowman (1978) J. Biol. Chem. 253, 5188-5194, and J. Svasti, A. Kurosky, A. Bennett, and B. H. Bowman (1979) Biochemistry 18, 1611-1617) has shown that the electrophoretic variations of the proteins controlled by two allelic genes, Gc1 and Gc2, are due to at least three amino acid substitutions between Gc1 and Gc2 (Svasti et al. (1979] and to heterogeneity in the Gc1 phenotype arising from carbohydrate dissimilarities. Gc1 migrates electrophoretically as two protein bands, while Gc2 migrates cathodally as a single band. This study demonstrates a post-translational glycosylation difference occurring in a single area of the Gc1 sequence which accounts for the heterogeneity observed previously. The glycosylation site, a threonine residue, appears to be in a sequence which differs between Gc1 and Gc2. The O-glycosidic bond, which is typical of mucins, is rare in plasma proteins. The cyanogen bromide fragment containing the galactosamine-containing carbohydrate in Gc1 was partially sequenced through 20 residues from the amino terminus. No detectable galactosamine could be found in the homologous cyanogen bromide fragment in Gc2. A new purification procedure for the vitamin D-binding protein in human plasma has been developed. Three chromatographic steps provide purified protein.  相似文献   

4.
Vitamin D-binding protein (DBP), a multi-functional serum glycoprotein, has a triple-domain modular structure. Mutation of Trp145 (in Domain I) to Ser decreased 25-OH-D(3)-binding by 80%. Furthermore, recombinant Domain I (1-203) and Domain I + II (1-330) showed specific and strong binding for 25-OH-D(3), but Domain III (375-427) did not, suggesting that only Domains I and II might be required for vitamin D sterol-binding. Past studies have suggested that Domain III is independently capable of binding G-actin. We exploited this apparently independent ligand-binding property of DBP to purify DBP-actin complex from human serum and rabbit muscle actin by 25-OH-D(3) affinity chromatography. Competitive (3)H-25-OH-D(3) binding curves for native DBP and DBP-actin complex were almost identical, further suggesting that vitamin D sterol- and actin-binding activities by DBP might be largely independent of each other. Trypsin treatment of DBP produced a prominent 25 kDa band (Domain I, minus 5 amino acids in N-terminus), while actin was completely fragmented by such treatment. In contrast, tryptic digestion of purified DBP-actin complex showed two prominent bands, 52 (DBP, minus 5 amino acids in the N-terminus) and 34 kDa (actin, starting with amino acid position 69) indicating that DBP, particularly its Domains II and III were protected from trypsin cleavage upon actin-binding. Similarly, actin, except its N-terminus, was also protected from tryptic digestion when complexed with DBP. These results provided the basis for our studies to crystallize DBP-actin complex, which produced a 2.5 A crystal, primitive orthorhombic with unit cell dimensions a=80.2A, b=87.3A, and c=159.6A, P2(1)2(1)2(1) space group, V(m)=2.9. Soaking of crystals of actin-DBP in crystallization buffer containing various concentrations of 25-OH-D(3) resulted in cracking of the crystal, which was probably a reflection of a ligand-induced conformational change in the complex, disrupting crystal contacts. In conclusion, we have provided data to suggest that although binding of 25-OH-D(3) to DBP might result in discrete conformational changes in the holo-protein to influence actin-binding, these binding processes are largely independent of each other in solution.  相似文献   

5.
The human serum vitamin D-binding protein (DBP) has many physiologically important functions, ranging from transporting vitamin D3 metabolites, binding and sequestering globular actin and binding fatty acids to functioning in the immune system. Here we report the 2.3 A crystal structure of DBP in complex with 25-hydroxyvitamin D3, a vitamin D3 metabolite, which reveals the vitamin D-binding site in the N-terminal part of domain I. To more explicitly explore this, we also studied the structure of DBP in complex with a vitamin D3 analog. Comparisons with the structure of human serum albumin, another family member, reveal a similar topology but also significant differences in overall, as well as local, folding. These observed structural differences explain the unique vitamin D3-binding property of DBP.  相似文献   

6.
Ferritin (Ft) is a large iron (Fe)-binding protein ( approximately 450 kDa) that is found in plant and animal cells and can sequester up to 4500 Fe atoms per Ft molecule. Our previous studies on intestinal Caco-2 cells have shown that dietary factors affect the uptake of Fe from Ft in a manner different from that of Fe from FeSO4, suggesting a different mechanism for cellular uptake. The objective of this study was to determine the mechanism for Ft-Fe uptake using Caco-2 cells. Binding of (59)Fe-labeled Ft at 4 degrees C showed saturable kinetics, and Scatchard analysis resulted in a K(d) of 1.6 muM, strongly indicating a receptor-mediated process. Competitive binding studies with excess unlabelled Ft significantly reduced binding, and uptake studies at 37 degrees C showed saturation after 4 h. Enhancing and blocking endocytosis using Mas-7 (a G-protein activator) and hypertonic medium (0.5 M sucrose), respectively, demonstrated that Ft-Fe uptake by Mas-7-treated cells was 140% of control cells, whereas sucrose treatment resulted in a statistically significant reduction in Ft-Fe uptake by 70% as compared to controls. Inhibition of macropinocytosis with 5-(N,N-dimethyl)-amiloride (Na+/H+ antiport blocker) resulted in a decrease (by approximately 20%) in Ft-Fe uptake at high concentrations of Ft, suggesting that enterocytes can use more than one Ft uptake mechanism in a concentration-dependent manner. These results suggest that Ft uptake by enterocytes is carried out via endocytosis when Ft levels are within a physiological range, whereas Ft at higher concentrations may be absorbed using the additional mechanism of macropinocytosis.  相似文献   

7.
The affinity of purified human vitamin D-binding protein from serum (DBP) for 25-hydroxyvitamin D3 (25-OHD3) and 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] was measured in the presence of free fatty acids (FFA), cholesterol, prostaglandins and several drugs. Mono- and polyunsaturated fatty acids markedly decreased the affinity of both 25-OHD3 and 1,25-(OH)2D3 for DBP, whereas saturated fatty acids (stearic and arachidic acid), cholesterol, cholesterol esters, retinol, retinoic acid and prostaglandins (A1 and E1) did not affect the apparent affinity. Several chemicals known to decrease the binding of thyroxine to its plasma-binding protein did not affect the affinity of DBP.

The apparent affinity of DBP for both 25-OHD3 and 1,25-(OH)2D3 decreased 2.4- to 4.6-fold in the presence of 36 μM of linoleic or arachidonic acid, respectively. Only a molar ratio of FFA:DBP higher than 10,000 was able to decrease the binding of 25-OHD3 to DBP by 20%. Much smaller ratio's of FFA:DBP (25 for arachidonic and 45 for oleic acid), however, decreased the binding of 1,25-(OH)2D3 to DBP. These latter ratio's are well within the physiological range. The addition of human albumin in a physiological albumin:DBP molar ratio did not impair the inhibitory effect of linoleic acid on the binding of [3H]25-OHD3 to DBP. The binding and bioavailability of vitamin D metabolites thus might be altered by mono- and polyunsaturated but not by saturated fatty acids.  相似文献   


8.
The interaction of fatty acids with bovine vitamin D-binding protein (DBP) was studied using a partition equilibrium method. This protein has one high affinity site for binding of fatty acids with an association constant Ka = 7 x 10(5) M-1 for palmitic acid and Ka = 6 x 10(5) M-1 for arachidonic acid. Competition experiments showed that palmitic acid hardly competes with 25-hydroxycholecalciferol for binding to DBP. However, arachidonic acid showed comparatively a stronger competition for binding to this protein. The great difference in competition of palmitic and arachidonic acids with 25-hydroxycholecalciferol may be related to changes in DBP conformation promoted by the binding of different ligands.  相似文献   

9.
10.
Human and bovine vitamin D-binding protein (DBP) have been isolated from serum by a method that does not involve denaturing steps. This method includes Cibacron Blue-Sepharose chromatography, gel filtration, DEAE-Sephadex chromatography and albumin immunoadsorption. Analysis of fatty acids bound to the isolated human and bovine DBP showed molar ratios of fatty acid to protein of 0.4 and 1.3 respectively meanwhile human and bovine albumin have bound 1.8 and 1.5 moles per mol respectively. Most of fatty acids bound to human and bovine DBP are monounsaturated and saturated, mainly oleic and palmitic acids, which together account for 50% of the total of fatty acids in both species. By contrast, polyunsaturated fatty acids represented a minor component, less than 5%.  相似文献   

11.
An interaction of vitamin D-binding protein to immobilized Cibacron Blue F3-GA was studied under urea containing buffers. In these buffers, this protein was adsorbed to the immobilized dye and was eluted with salt gradients as in the same buffer without urea. The protein was also adsorbed to immobilized diethylaminoethyl but not to immobilized carboxymethyl. It is implicated that a combination of pseudo-ligand affinity and/or hydrogen bonding interaction plays a large role whereas ionic, hydrophobic and lipophilic interactions act little between the protein and the immobilized blue dye.  相似文献   

12.
13.
Head JF  Swamy N  Ray R 《Biochemistry》2002,41(29):9015-9020
A high-affinity complex formed between G-actin and plasma vitamin D-binding protein (DBP) is believed to form part of a scavenging system in the plasma for removing actin released from damaged cells. In the study presented here, we describe the crystal structure of the complex between actin and human vitamin D-binding protein at 2.5 A resolution. The complex contains one molecule of each protein bound together by extensive ionic, polar, and hydrophobic interactions. It includes an ATP and a calcium ion bound to actin, but no evidence of vitamin D metabolites bound to the DBP. Both actin and DBP are multidomain molecules, two major domains in actin and three in DBP. All of these domains contribute to the interaction between the molecules. DBP enfolds the end of the actin molecule, principally in actin subdomain 3 but with additional interactions in actin subdomain 1. This orientation is similar to the binding of profilin to actin, as predicted from previous studies. The more extensive interactions of DBP give an affinity for actin some 3 orders of magnitude higher than that for profilin. The larger "footprint" of DBP on actin also leads to an overlap with the actin-binding site of gelsolin domain I.  相似文献   

14.
The transporter of vitamin D and its metabolites in blood has received increasing attention in recent years, and is recognized to be a member of a gene family that includes albumin and -fetoprotein. Identical to the group specific component (Gc-globulin) of serum, the protein is a single-chain polypeptide constitutively synthesized in liver that circulates in amounts in far excess of normal vitamin D metabolite concentrations in blood. It plays the major role in the egress of endogenously synthesized vitamin D3 from skin and appears to restrain D-sterols from too rapid/excessive cell entry. Along with plasma gelsolin, it comprises the plasma actin-scavenger system that facilitates removal of actin, liberated from lysed cells, by depolymerization and prevention of polymerization. Recently, the protein has been shown to behave as a co-chemotaxin specific for the complement peptide C5a, and its sialic acid-free form has been reported to play a role in macrophage activation. The latter functions strongly implicate its participation in inflammation responses. A unifying hypothesis might also suggest the protein to provide focal D-sterol delivery to cells that are important to the resolution of tissue injuries.  相似文献   

15.
41 Amino acid long N-terminal sequences of the three major human vitamin D-binding proteins (group-specific components Gc1F, Gc1S and Gc2) were characterized: they were identical. By computer analyses, the alignment of this N-terminal sequence with several sequences of human serum pre-proalbumin and human pre-alpha-fetoprotein was established.  相似文献   

16.
Normal human monocyte-macrophages were cholesterol-loaded, and the rates of uptake and degradation of several lipoproteins were measured and compared to rates in control cells. Receptor activities for 125I-rabbit beta-very low density lipoproteins (beta-VLDL), 125I-human low density lipoprotein, and 125I-human chylomicrons were down-regulated in cholesterol-loaded cells; however, the rate of uptake and degradation of 125I-human chylomicron remnants was unchanged from control cells. Cholesterol-loaded alveolar macrophages from a Watanabe heritable hyperlipidemic rabbit, which lack low density lipoprotein receptors, showed receptor down-regulation for 125I-beta-VLDL but not for 125I-human chylomicron remnants. In addition to chylomicron remnants, apo-E-phospholipid complexes competed for 125I-chylomicron remnant uptake, but apo-A-I-phospholipid complexes did not. Chylomicrons competed for lipoprotein uptake in control cells but were not recognized under conditions of cholesterol loading. Chylomicron remnants and beta-VLDL were equally effective in competing for 125I-beta-VLDL and 125I-chylomicron remnant uptake in cholesterol-loaded macrophages. When normal human monocyte-macrophages were incubated in serum supplemented with chylomicron remnants, the cholesteryl ester content increased 4-fold over cells incubated in serum with low density lipoprotein added. We conclude: 1) specific lipoprotein receptor activity persists in cholesterol-loaded cells; 2) this receptor activity recognizes lipo-proteins (at least in part) by their apo-E content; and 3) cholesteryl ester accumulation can occur in monocyte-macrophages incubated with chylomicron remnants.  相似文献   

17.
Receptor-mediated uptake of low density lipoprotein (LDL) has been shown to provide a major source of cholesterol for a variety of cell types, particularly steroidogenic cells. In this study, the functional significance of lipoproteins in porcine ovarian granulosa cells and their mechanism of uptake by the cell was examined. Porcine LDL and high density lipoprotein (HDL) were isolated using a KBr density gradient, and the purity of both lipoproteins was confirmed by single corresponding bands on agarose gel stained for lipid and protein. Purified LDL and HDL were radioiodinated and labelled with colloidal gold for binding and tracer studies respectively. Both lipoproteins bind to cell surface and are internalized within 30 min at 37 degrees C. The cultured granulosa cells possess more HDL binding sites than LDL binding sites and are more responsive in progesterone production when supplemented with HDL. These results suggest that granulosa cells may preferentially utilize HDL over LDL as a source of cholesterol for steroidogenesis.  相似文献   

18.
Rapid and selective removal of plasma vitamin D-binding protein was effected by the serial passage of plasma over four columns of agarose containing covalently linked skeletal muscle G-actin. By maintaining an actin-to-binding protein molar ratio of at least 4 to 1 throughout, greater than 99% of the binding protein was removed from the fourth column's eluate. In contrast, 87% of the total plasma or serum protein applied was recovered, and electrophoretic analyses of human and bovine sera that had undergone these affinity chromatography steps revealed no major alterations in protein distribution. The procedure also removes vitamin D sterols selectively, with preference for 25-hydroxycalciferol (90% removal) over 1,25-dihydroxycalciferol (65-70% removal) and calciferol (70% removal), in accordance with the known affinity displayed by the binding protein for these sterol ligands. Recovery of other serum constituents (cortisol, proteins, peptide hormones, calcium and alkaline phosphatase) was excellent, further confirming the selectivity of the technique. Utilizing vitamin D-deficient serum, serum depleted of the vitamin D-binding protein was not distinguishable from control serum in supporting the growth of human fibroblasts in vitro. In comparison with other methods to remove serum-binding protein or sterols, the present technique is more selective and can be used for mammalian and avian sera. Material so prepared could prove useful for studies of the cellular access, metabolism, and effects of vitamin D sterols in vitro.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号