首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
该文主要探究Ghrelin对三氧化二砷(As2O3)导致的骨髓间充质干细胞(BMSCs)增殖和成骨分化的影响。BMSCs设为对照组、As2O3组、Ghrelin组和联合(As2O3+Ghrelin)组。MTT法检测细胞增殖能力;成骨诱导的第7天和第14天,Real-time PCR及Western blot分别检测成骨相关因子OPN、ALP、RUNX2的mRNA及蛋白表达;第21天,茜素红染色分析钙盐沉积情况。结果显示,细胞增殖能力Ghrelin组>对照组>联合组>As2O3组。与对照组比,As2O3组各因子表达均显著下调(P<0.05),Ghrelin组第14天OPN蛋白表达无显著变化,其余因子均上调(P<0.05);联合组与As2O3组比,第14天OPN基因表达和第7天ALP蛋白表达无显著差异,其余均显著上调(P<0.05)。钙盐沉积:Ghrelin组>对照组>联合组>As2O3组。提示0.5μmol/L As2O3抑制BMSCs增殖和成骨分化,600 ng/mL Ghrelin增强细胞增殖和成骨分化;且Ghrelin能减弱As2O3导致的BMSCs增殖和成骨分化抑制作用。  相似文献   

2.
韧带成纤维细胞成骨分化与强直性脊柱炎等多种异位骨化相关性疾病有关,但其机制尚不清楚.本研究目的在于观察韧带成纤维细胞在成骨分化过程中microRNA和mRNA的表达谱变化,以期为揭示成纤维细胞成骨分化机制提供研究基础.原代培养韧带成纤维细胞、地塞米松、抗坏血酸和β 磷酸甘油体外诱导其成骨分化, RT-PCR检测成骨标志物骨钙素和Runx2的表达.采用表达谱基因芯片分析诱导0、7、14 d后韧带成纤维细胞的microRNAs和mRNAs表达,并用实时定量PCR(RT-qPCR)和Western印迹方法验证生物信息学分析结果.结果显示,与未诱导前相比,成骨分化第7 d有66个microRNAs和640个mRNA表达上调,94个microRNAs和744个mRNA表达下调;成骨分化第14 d有58个microRNAs和781个mRNA表达上调,96个microRNAs和603个mRNA表达下调.实时定量PCR和Western印迹验证结果显示,miR-29b在成骨分化过程中表达上调,TGFβ3表达水平降低,与芯片结果一致,miR-29b通过抑制TGFβ3蛋白的翻译来促进Runx2的表达,从而促进韧带成纤维细胞向成骨细胞分化.韧带成纤维细胞成骨分化过程中,microRNA调控基因及mRNA差异表达基因除涉及BMPs、Wnt和Ihh等信号通路外,在成纤维细胞成骨分化过程中可能还存在其它的新机制.  相似文献   

3.
4.
5.
PP Wang  DY Xie  XJ Liang  L Peng  GL Zhang  YN Ye  C Xie  ZL Gao 《PloS one》2012,7(8):e43408

Aims

Bone marrow-derived mesenchymal stem cells (BMSCs) can reduce liver fibrosis. Apart from the paracrine mechanism by which the antifibrotic effects of BMSCs inhibit activated hepatic stellate cells (HSCs), the effects of direct interplay and juxtacrine signaling between the two cell types are poorly understood. The purpose of this study was to explore the underlying mechanisms by which BMSCs modulate the function of activated HSCs.

Methods

We used BMSCs directly and indirectly co-culture system with HSCs to evaluate the anti-fibrosis effect of BMSCs. Cell proliferation and activation were examined in the presence of BMSCs and HGF. c-met was knockdown in HSCs to evaluate the effect of HGF secreted by BMSCs. The TLR4 and Myeloid differentiation primary response gene 88(MyD88) mRNA levels and the NF-kB pathway activation were determined by real-time PCR and western blotting analyses. The effect of BMSCs on HSCs activation was investigated in vitro in either MyD88 silencing or overexpression in HSCs. Liver fibrosis in rats fed CCl4 with and without BMSCs supplementation was compared. Histopathological examinations and serum biochemical tests were compared between the two groups.

Results

BMSCs remarkably inhibited the proliferation and activation of HSCs by interfering with LPS-TLR4 pathway through a cell–cell contact mode that was partially mediated by HGF secretion. The NF-kB pathway is involved in HSCs activation inhibition by BMSCs. MyD88 over expression reduced the BMSC inhibition of NF-kB luciferase activation. BMSCs protected liver fibrosis in vivo.

Conclusion

BMSCs modulate HSCs in vitro via TLR4/MyD88/NF-kB signaling pathway through cell–cell contact and secreting HGF. BMSCs have therapeutic effects on cirrhosis rats. Our results provide new insights into the treatment of hepatic fibrosis with BMSCs.  相似文献   

6.
Cathepsin B is one of the most important proteolytic enzymes involved in the nutrient metabolism of clam Meretrix meretrix. The recombinant fusion protein GST-MmeCB (rGST-MmeCB) was obtained at a high level from Escherichia coli and identified using LC-ESI-MS/MS. The GST tag was cleaved from rGST-MmeCB, and the resulting recombinant MmeCB (rMmeCB) was able to degrade the selective substrate carbobenzoxy-l-arginyl-l-arginyl-7-amino-4-trifluoromethylcoumarin (Z-Arg-Arg-AFC) in vitro. The kinetic parameters of the rMmeCB were calculated as follows: K m, Vmax and k cat are 6.11 μM, 0.0174 μM min−1 and 277.57 s−1, respectively. Rabbit anti-rGST-MmeCB polyclonal antibodies was prepared and used to analyze the tissue distribution of MmeCB protein in M. meretrix. The results showed that the highest level of cathepsin B was found in the digestive gland and moderate levels were found in gill and mantle. Similar expression patterns were found at the mRNA level as detected by real time PCR. Further analysis showed that starvation caused a slight increase in MmeCB protein synthesis in the digestive gland, while refeeding after starvation caused an apparent increase in MmeCB synthesis in digestive gland, gill and mantle. Real time PCR analysis showed that MmeCB mRNA in digestive gland was significantly up-regulated by starvation and returned to normal level after the starved clams were refed. Together, these results indicated that cathepsin B is probably involved in the nutrient digestion of M. meretrix.  相似文献   

7.
8.
Bone marrow-derived mesenchymal stem cells (BMSCs) are of particular interest in the field of tissue engineering because of their potential to differentiate into osteoblasts, chondrocytes, and neuronal cells. In order to promote the differentiation of BMSCs into specific cell types, appropriate scaffold biomaterials and bioactive molecules that can support the differentiation of BMSCs into specific cell types are needed. We hypothesized that β-mercaptoethanol (BME), which has been reported to induce the differentiation of BMSCs into neural-like cells, promotes BMSCs to differentiate into neural-like cells when BME is added to polymeric scaffolds containing the BMSCs. We fabricated biocompatible film shaped scaffolds composed of poly(lacti-co-glycolic) acid (PLGA) and various concentrations of BME to confirm that BME-promoted differentiation of BMSCs is concentration-dependent. Cell proliferation increased as the BME concentration in the films increased at the early stage, and the proliferation rate remained similar on the PLGA films for 3 weeks following the BMSC seeding. The expression of neuronal markers in differentiated BMSCs was assessed by RT-PCR. At 2- and 3-week time-points, mRNA expression of neurofilament and neuron specific enolase was significantly increased in PLGA/BME films containing 400 μM BME compared to PLGA films. Thus, we have identified BMSC-seeded PLGA/BME films with 200 μM and 400 μM BME as potentially useful candidates for neural tissue engineering applications by promoting BMSC proliferation and differentiation towards neural-like cells.  相似文献   

9.
Epigallocatechin gallate (EGCG), a major component of tea, has known effects on obesity, fatty liver, and obesity‐related cancer. We explored the effects of EGCG on the differentiation of bovine mesenchymal stem cells (BMSCs, which are multipotent) in a dose‐ and time‐dependent manner. Differentiating BMSCs were exposed to various concentrations of EGCG (0, 10, 50, 100, and 200 µM) for 2, 4, and 6 days. BMSCs were cultured in Dulbecco's modified Eagle's medium (DMEM)/high‐glucose medium with adipogenic inducers for 6 days, and the expression levels of various genes involved in adipogenesis were measured using real‐time polymerase chain reaction (PCR) and Western blotting. We assessed apoptosis by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick‐end labeling (TUNEL) staining of control and EGCG‐exposed cells. We found that EGCG significantly suppressed fat deposition and cell viability (P < 0.05). The mRNA and protein levels of various adipogenic factors were measured. Expression of the genes encoding peroxisome proliferator‐activated receptor gamma (PPARG), CCAAT/enhancer‐binding protein alpha (CEBPA), fatty acid‐binding protein 4 (FABP4), and stearoyl‐CoA desaturase (SCD) were diminished by EGCG during adipogenic differentiation (P < 0.05). We also found that EGCG lowered the expression levels of the adipogenic proteins encoded by these genes (P < 0.05). EGCG induced apoptosis during adipogenic differentiation (P < 0.05). Thus, exposure to EGCG potentially inhibits adipogenesis by triggering apoptosis; the data suggest that EGCG inhibits adipogenic differentiation in BMSCs.  相似文献   

10.
利用RT-PCR和RACE相结合的方法,从长春花中克隆了丙二烯氧化物合酶(AOS)基因。结果显示:长春花AOS基因(CrAOS)cDNA全长为2 118bp,包括5′和3′非翻译区,polyA尾和一个长1 638bp的开放阅读框,其基因组中不含内含子;CrAOS基因编码的蛋白含545个氨基酸。多重比对表明CrAOS蛋白与其他的AOS蛋白具有较高的相似性,CrAOS蛋白序列中含有AOS家族应有的保守氨基酸残基。Southern杂交表明:CrAOS基因在长春花中为低拷贝。qRT-PCR结果显示:CrAOS在各个组织均有表达但表达量存在差异,在老叶中最高,在幼花中表达最低。对长春花幼苗进行不同处理,结果表明:伤害、低温、甲基茉莉酸、乙烯利处理等可使CrAOS基因表达量显著提高,水杨酸处理对基因表达影响不大。  相似文献   

11.
Bone morphogenetic protein (BMP)-4 has a crucial role on primordial germ cells (PGCs) development in vivo which can promote stem cell differentiation to PG-like cells. In this study, we investigated the expression of Mvh as one of the specific genes in primordial germ cells after treatment with different doses of BMP4 on bone mesenchymal stem cells (BMSCs)-derived PGCs. Following isolation of BMSCs from male mouse femur and tibia, cells were cultured in medium for 72 h. Passage 4 murine BMSCs were characterized by CD90, CD105, CD34, and CD45 markers and osteo-adipogenic differentiation. Different doses of BMP4 (0, 0.01, 0.1, 1, 5, 25, 50, and 100 ng/ml) were added to BMSCs for PGCs differentiation during 4-days culture. Viability percent, proliferation rates, and expression of Mvh gene were analyzed by RT-qPCR. Data analysis was done with ANOVA test. CD90+, CD105+, CD34, and CD45 BMSCs were able to differentiate to osteo-adipogenic lineages. The results revealed that proliferation rate and viability percent were raised significantly (p ≤ 0.05) by adding 1, 5, 25 ng/ml of BMP4 and there were decreased to the lowest rate after adding 100 ng/ml BMP4 (p ≤ 0.05). There were significant up regulation (p ≤ 0.05) in Mvh expression between 25, 50, and 100 ng/ml BMP4 with other doses. So the selective dose of BMP-4 for treatment during 4-day culture was 25 ng/ml. The results suggest that addition of 25 ng/ml BMP4 had the best effects based on gene-specific marker expression.  相似文献   

12.
13.
14.
Objective:To explore the effects and mechanism of miR-21 on the osteogenic/adipogenic differentiation of mouse BMSCs.Methods:The bilateral ovaries of C57BL/6J mice (n=24) were removed to construct an osteoporosis model. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-21, osteogenic/adipogenic genes, and PTEN. ALP and ARS and ORO staining were used to detect the formation of calcium nodules and lipid droplets in BMSCs. Western blot was used to detect the expression of PTEN.Results:miR-21 was significantly down-regulated in osteoporotic mice. The expression of miR-21 was significantly up-regulated after the osteogenic induction of BMSCs, and the expression of miR-21 was significantly down-regulated after the adipogenic induction. Overexpression of miR-21 significantly promoted the osteogenic differentiation of BMSCs and inhibits the adipogenic differentiation of BMSCs.Conclusion:MiR-21 can promote osteogenic differentiation of BMSCs and inhibit their adipogenic differentiation by negatively regulating PTEN.  相似文献   

15.

Objective

Embryo implantation is directly affected by genes related to uterine receptivity. Studies have demonstrated the important roles of miRNAs in the regulation of gene expression. Our early miRNA chip analyses revealed that the mmu-miR-141 expression in endometrial tissue is lower after embryo implantation than before it. However, the possible roles of miR-141 in embryo implantation have not yet been elucidated. Here, mmu-miR-141 was designed to detect the expression and role of miR-141 in the endometria of mice in early pregnancy following embryo implantation.

Methods

Real-time PCR and in-situ hybridization were used to study mmu-miR-141 expression in mouse uterus. Cell proliferation was detected by tetrazolium dye (MTT) assay and flow cytometry. Real-time PCR and Western blot analysis were used to confirm the mRNA and protein levels of phosphatase and tensin homolog (PTEN) to determine whether it was the target gene of mmu-miR-141. Enhanced green fluorescent protein (EGFP) fluorescence reporter vector analysis was also performed. A functional study was performed by injecting mice uteri with mmu-miR-141 inhibitor or mimic vectors.

Results

mmu-miR-141 expression was lower on day 6 (D6) than day 4 (D4) and could be increased by progesterone. Reduced mmu-miR-141 could decrease the proliferation activity of stromal cells and promote apoptosis. Upregulation of mmu-miR-141 inhibited PTEN protein expression but downregulation of mmu-miR-141 increased it, while the mRNA level remained unchanged. EGFP fluorescence reporter vector analysis showed that miR-141 targets the 3′-untranslated region of the PTEN mRNA. In addition, when the physiological mmu-miR-141 level was altered on D2 by injecting with inhibitor or mimic, the embryo implantation sites were significantly decreased on D7.

Conclusions

This study demonstrated that mmu-miR-141 might influence cell proliferation and apoptosis in the endometrium by negatively regulating PTEN expression, and could also influence the number of embryo implantation sites. mmu-miR-141 plays an essential role in embryo implantation.  相似文献   

16.
Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca2+ on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca2+ on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca2+ (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca2+ stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca2+ significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.  相似文献   

17.
目的:观察自体富血小板纤维蛋白(platelet-rich fibrin,PRF)对体外培养的兔骨髓间充质干细胞(Bonemarrowmesenchymalstemcells,BMSCs)成软骨分化的影响。方法:兔心脏采血制备PRF,电镜观察其超微结构;分离培养兔BMSCs,取第3代细胞用于实验.分为PIuF组、阳性对照组、空白对照组。诱导培养21d后,对三组细胞分别进行形态学观察,成软骨鉴定染色(甲苯胺蓝、Ⅱ型胶原免疫组化染色),软骨相关基因表达检测(Ⅱ型胶原、Aggrecan、SOX9)。结果:PRF组和阳性对照组中BMSCs经诱导后,细胞由长梭形变为三角形、多角形、圆形;甲苯胺蓝、Ⅱ型胶原免疫组化染色均为阳性;Ⅱ型胶原、Aggrecan、SOX9基因表达水平均较高,两组比较无统计学差异,空白对照组未见相关分化现象。结论:PRF在体外可促进兔BMSCs成软骨分化,可作为自体生物材料,在构建组织工程软骨中发挥更好的作用。  相似文献   

18.
为研究DNA甲基化在帕金森病发病机制中的作用,本研究用环境毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)连续腹腔给药诱导小鼠帕金森病(Parkison's disease,PD)模型,应用ELISA检测小鼠黑质脑组织总体甲基化水平,应用实时荧光定量PCR方法检测DNA甲基转移酶表达水平,探讨MPTP诱导的小鼠PD模型黑质部位是否存在DNA甲基化异常.进一步应用甲基化DNA免疫共沉淀结合DNA甲基化芯片方法,构建MPTP诱导的小鼠PD模型黑质脑组织DNA甲基化谱,并寻找DNA甲基化修饰异常的PD相关基因对其进行验证.结果表明,模型组小鼠黑质脑组织DNA总体甲基化水平较对照组显著降低,Dnmt1的表达水平显著增高.利用DNA甲基化芯片在全基因组内筛选出甲基化差异修饰位点共48个,涉及44个基因,这些甲基化差异基因参与信号转导、分子转运、转录调控、发育、细胞分化、凋亡调控、氧化应激、蛋白质降解等生物学过程.在甲基化差异修饰基因中,对Uchl1基因及Arih2基因进行了甲基化水平以及表达水平的验证.结果表明,模型组小鼠黑质脑组织Uchl1启动子区域甲基化水平较对照组增高,m RNA及蛋白质表达水平降低,Arih2启动子区域甲基化水平较对照组降低,m RNA及蛋白质表达水平增高.实验结果进一步证实,DNA甲基化修饰异常在帕金森病发病机制中有重要作用,环境因素(如MPTP)可以通过改变DNA甲基化修饰参与帕金森病的发生发展.  相似文献   

19.
20.
Neurofibromatosis type I (NF1), which is caused by mutations in the NF1 gene, is a common autosomal dominant genetic disease leading to skeletal abnormalities. Both NF1 gene and mammalian target of rapamycin complex 1 (mTORC1) signaling are associated with the osteogenic differentiation of bone marrow stem cells (BMSCs). In this study, we hypothesized that mTORC1 signaling is involved in NF1-modulated osteoblast differentiation of BMSCs. Human BMSCs were cultured in an osteogenic induction medium. The expression of NF1 was either inhibited or overexpressed by transfecting NF1 with a specific small interfering RNA (siRNA) or pcDNA3.0 plasmid, respectively. In addition, an mTORC1 signaling inhibitor and agonist were used to investigate the effects of mTORC1 on NF1-modulated osteogenic differentiation of BMSCs. The results indicated that inhibiting the expression of NF1 with siRNA significantly decreased the mRNA levels of NF1, whereas overexpressing the expression of NF1 with pcDNA3.0 plasmid significantly increased the mRNA levels of NF1 at days 3, 7, 14 and 21 after culture. We observed reduced osteogenic differentiation and cell proliferation in the NF1-siRNA group and enhanced osteogenic differentiation and cell proliferation of BMSCs in the NF1-pcDNA3.0 group. The activity of mTORC1 signaling (p-mTORC1, p-S6K1, and p-4EBP1) was significantly upregulated in the NF1-siRNA group and significantly inhibited in the NF1-pcDNA3.0 group, 7 and 14 days after culture. The effects of NF1-siRNA and NF1- pcDNA3.0 on osteogenic differentiation of BMSCs and cell proliferation were reversed by mTORC1 inhibitor and agonist, respectively. In conclusion, NF1 modulates osteogenic differentiation and cell proliferation of human BMSCs and mTORC1 signaling is essential for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号