首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calculator program package is given for the computation of the parameters of two different pharmacokinetic models: the 'one compartment open model' with first order absorption, and the 'two compartment open model' with rapid intravenous injection, using the peeling method. If parameters are known, simulation of these systems can be done for single and repetitive doses. The package includes an area under curve (AUC) program for the evaluation of clearance. The algorithms were applied for TI 58,59 and HP 97 calculators and they can be widely used in clinical practice.  相似文献   

2.
Many studies on integration of process planning and production scheduling have been carried out during the last decade. While various integration approaches and algorithms have been proposed, the implementation of these approaches is still a difficult issue. To achieve successful implementation, it is important to examine and evaluate integration approaches or algorithms beforehand. Based on an object-oriented integration testbed, a simulation study that compares different integration algorithms is presented in this paper. Separated planning method and integrated planning methods are examined. Also, situations of both fixed and variable processing times are simulated, and useful results have been observed. The successful simulation with the object-oriented integration testbed eventually will be extended to include other new planning algorithms for examining their effectiveness and implementation feasibility.  相似文献   

3.
Many if not all models of disease transmission on networks can be linked to the exact state-based Markovian formulation. However the large number of equations for any system of realistic size limits their applicability to small populations. As a result, most modelling work relies on simulation and pairwise models. In this paper, for a simple SIS dynamics on an arbitrary network, we formalise the link between a well known pairwise model and the exact Markovian formulation. This involves the rigorous derivation of the exact ODE model at the level of pairs in terms of the expected number of pairs and triples. The exact system is then closed using two different closures, one well established and one that has been recently proposed. A new interpretation of both closures is presented, which explains several of their previously observed properties. The closed dynamical systems are solved numerically and the results are compared to output from individual-based stochastic simulations. This is done for a range of networks with the same average degree and clustering coefficient but generated using different algorithms. It is shown that the ability of the pairwise system to accurately model an epidemic is fundamentally dependent on the underlying large-scale network structure. We show that the existing pairwise models are a good fit for certain types of network but have to be used with caution as higher-order network structures may compromise their effectiveness.  相似文献   

4.
MOTIVATION: Dot-matrix plots are widely used for similarity analysis of biological sequences. Many algorithms and computer software tools have been developed for this purpose. Though some of these tools have been reported to handle sequences of a few 100 kb, analysis of genome sequences with a length of >10 Mb on a microcomputer is still impractical due to long execution time and computer memory requirement. RESULTS: Two dot-matrix comparison methods have been developed for analysis of large sequences. The methods initially locate similarity regions between two sequences using a fast word search algorithm, followed with an explicit comparison on these regions. Since the initial screening removes most of random matches, the computing time is substantially reduced. The methods produce high quality dot-matrix plots with low background noise. Space requirements are linear, so the algorithms can be used for comparison of genome size sequences. Computing speed may be affected by highly repetitive sequence structures of eukaryote genomes. A dot-matrix plot of Yeast genome (12 Mb) with both strands was generated in 80 s with a 1 GHz personal computer.  相似文献   

5.
6.
Model-based clustering and data transformations for gene expression data.   总被引:20,自引:0,他引:20  
MOTIVATION: Clustering is a useful exploratory technique for the analysis of gene expression data. Many different heuristic clustering algorithms have been proposed in this context. Clustering algorithms based on probability models offer a principled alternative to heuristic algorithms. In particular, model-based clustering assumes that the data is generated by a finite mixture of underlying probability distributions such as multivariate normal distributions. The issues of selecting a 'good' clustering method and determining the 'correct' number of clusters are reduced to model selection problems in the probability framework. Gaussian mixture models have been shown to be a powerful tool for clustering in many applications. RESULTS: We benchmarked the performance of model-based clustering on several synthetic and real gene expression data sets for which external evaluation criteria were available. The model-based approach has superior performance on our synthetic data sets, consistently selecting the correct model and the number of clusters. On real expression data, the model-based approach produced clusters of quality comparable to a leading heuristic clustering algorithm, but with the key advantage of suggesting the number of clusters and an appropriate model. We also explored the validity of the Gaussian mixture assumption on different transformations of real data. We also assessed the degree to which these real gene expression data sets fit multivariate Gaussian distributions both before and after subjecting them to commonly used data transformations. Suitably chosen transformations seem to result in reasonable fits. AVAILABILITY: MCLUST is available at http://www.stat.washington.edu/fraley/mclust. The software for the diagonal model is under development. CONTACT: kayee@cs.washington.edu. SUPPLEMENTARY INFORMATION: http://www.cs.washington.edu/homes/kayee/model.  相似文献   

7.
The island rule states that after island colonization, larger animals tend to evolve reduced body sizes and smaller animals increased sizes. Recently, there has been disagreement about how often, if ever, this rule applies in nature, and much of this disagreement stems from differences in the statistical tests employed. This study shows, how different tests of the island rule assume different null hypotheses, and that these rely on quite different biological assumptions. Analysis and simulation are then used to quantify the biases in the tests. Many widely used tests are shown to yield false support for the island rule when island and mainland evolution are indistinguishable, and so a Monte Carlo permutation test is introduced that avoids this problem. It is further shown that tests based on independent contrasts lack power to detect the island rule under certain conditions. Finally, a complete reanalysis is presented of recent data from primates. When head-body length is used as the measure of body size, reports of the island rule are shown to stem from methodological artefacts. But when skull length or body mass are used, all tests agree that the island rule does hold in primates.  相似文献   

8.
Space is a very important aspect in the simulation of biochemical systems; recently, the need for simulation algorithms able to cope with space is becoming more and more compelling. Complex and detailed models of biochemical systems need to deal with the movement of single molecules and particles, taking into consideration localized fluctuations, transportation phenomena, and diffusion. A common drawback of spatial models lies in their complexity: models can become very large, and their simulation could be time consuming, especially if we want to capture the systems behavior in a reliable way using stochastic methods in conjunction with a high spatial resolution. In order to deliver the promise done by systems biology to be able to understand a system as whole, we need to scale up the size of models we are able to simulate, moving from sequential to parallel simulation algorithms. In this paper, we analyze Smoldyn, a widely diffused algorithm for stochastic simulation of chemical reactions with spatial resolution and single molecule detail, and we propose an alternative, innovative implementation that exploits the parallelism of Graphics Processing Units (GPUs). The implementation executes the most computational demanding steps (computation of diffusion, unimolecular, and bimolecular reaction, as well as the most common cases of molecule-surface interaction) on the GPU, computing them in parallel on each molecule of the system. The implementation offers good speed-ups and real time, high quality graphics output  相似文献   

9.
Guo H  Zhu YP  Li D  He FC 《遗传》2011,33(8):809-819
肿瘤是一种严重影响人类健康和生命的复杂疾病。某些生物学通路在肿瘤的发生、发展和转移的过程中发挥了关键作用,如何发现和研究肿瘤相关通路是人们面临的一大挑战。随着以基因芯片数据为代表的海量实验数据的产出,很多研究小组提出了一系列算法和模型通过整合和分析实验数据,鉴定和模拟肿瘤相关的生物学通路,发现了很多重要的生物学结论。文章对这些研究工作进行了综述,给出了一些常用的算法、软件和数据库资源,并讨论了该领域存在的问题和以后的发展方向。  相似文献   

10.
11.
Orio P  Soudry D 《PloS one》2012,7(5):e36670
BACKGROUND: The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. MAIN CONTRIBUTIONS: We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable--allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used.  相似文献   

12.
Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.  相似文献   

13.
14.
Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.  相似文献   

15.
Many phylogenetic comparative methods that are currently widely used in the scientific literature assume a Brownian motion model for trait evolution, but the suitability of that model is rarely tested, and a number of important factors might affect whether this model is appropriate or not. For instance, we might expect evolutionary change in adaptive radiations to be driven by the availability of ecological niches. Such evolution has been shown to produce patterns of change that are different from those modelled by the Brownian process. We applied two tests for the assumption of Brownian motion that generally have high power to reject data generated under non-Brownian niche-filling models for the evolution of traits in adaptive radiations. As a case study, we used these tests to explore the evolution of feeding adaptations in two radiations of warblers. In one case, the patterns revealed do not accord with Brownian motion but show characteristics expected under certain niche-filling models.  相似文献   

16.
In this paper, a simulation tool for modeling axon guidance is presented. A mathematical framework in which a wide range of models can been implemented has been developed together with efficient numerical algorithms. In our framework, models can be defined that consist of concentration fields of guidance molecules in combination with finite-dimensional state vectors. These vectors can characterize migrating growth cones, target neurons that release guidance molecules, or other cells that act as sources of membrane-bound or diffusible guidance molecules. The underlying mathematical framework is presented as well as the numerical methods to solve them. The potential applications of our simulation tool are illustrated with a number of examples, including a model of topographic mapping.  相似文献   

17.
Many computational problems and methods have been proposed for analysis of biological pathways. Among them, this paper focuses on extraction of mapping rules of atoms from enzymatic reaction data, which is useful for drug design, simulation of tracer experiments, and consistency checking of pathway databases. Most of existing methods for this problem are based on maximal common subgraph algorithms. In this paper, we propose a novel approach based on graph partition and graph isomorphism. We show that this problem is NP-hard in general, but can be solved in polynomial time for wide classes of enzymatic reactions. We also present an O(n(1.5)) time algorithm for a special but fundamental class of reactions, where n is the maximum size of compounds appearing in a reaction. We develop practical polynomial-time algorithms in which the Morgan algorithm is used for computing the normal form of a graph, where it is known that the Morgan algorithm works correctly for most chemical structures. Computational experiments are performed for these practical algorithms using the chemical reaction data stored in the KEGG/LIGAND database. The results of computational experiments suggest that practical algorithms are useful in many cases.  相似文献   

18.
MOTIVATION: Grouping genes having similar expression patterns is called gene clustering, which has been proved to be a useful tool for extracting underlying biological information of gene expression data. Many clustering procedures have shown success in microarray gene clustering; most of them belong to the family of heuristic clustering algorithms. Model-based algorithms are alternative clustering algorithms, which are based on the assumption that the whole set of microarray data is a finite mixture of a certain type of distributions with different parameters. Application of the model-based algorithms to unsupervised clustering has been reported. Here, for the first time, we demonstrated the use of the model-based algorithm in supervised clustering of microarray data. RESULTS: We applied the proposed methods to real gene expression data and simulated data. We showed that the supervised model-based algorithm is superior over the unsupervised method and the support vector machines (SVM) method. AVAILABILITY: The program written in the SAS language implementing methods I-III in this report is available upon request. The software of SVMs is available in the website http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi  相似文献   

19.
The problem of identifying meaningful patterns (i.e., motifs) from biological data has been studied extensively due to its paramount importance. Three versions of this problem have been identified in the literature. One of these three problems is the planted (l, d)-motif problem. Several instances of this problem have been posed as a challenge. Numerous algorithms have been proposed in the literature that address this challenge. Many of these algorithms fall under the category of heuristic algorithms. In this paper we present algorithms for the planted (l, d)-motif problem that always find the correct answer(s). Our algorithms are very simple and are based on some ideas that are fundamentally different from the ones employed in the literature. We believe that the techniques we introduce in this paper will find independent applications.  相似文献   

20.
Many important problems in cell biology arise from the dense nonlinear interactions between functional modules. The importance of mathematical modelling and computer simulation in understanding cellular processes is now indisputable and widely appreciated. Genome-scale metabolic models have gained much popularity and utility in helping us to understand and test hypotheses about these complex networks. However, there are some caveats that come with the use and interpretation of different types of metabolic models, which we aim to highlight here. We discuss and illustrate how the integration of thermodynamic and kinetic properties of the yeast metabolic networks in network analyses can help in understanding and utilizing this organism more successfully in the areas of metabolic engineering, synthetic biology and disease treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号