首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The different types of fibres of the collagenous and elastic systems can be demonstrated specifically in tissue sections by comparing the typical ultrastructural picture of each of the fibre types with studies using selective staining techniques for light microscopy. A practicalmodus operandi, which includes the recommended staining procedures and interpretation of the results, is presented. Micrographs and tables are provided to summarize the differential procedures. Reticulin fibres display a distinct argyrophilia when studied by means of silver impregnation techniques, and show up as a thin meshwork of weakly birefringent, greenish fibres when examined with the aid of the Picrosirius-polarization method. In addition, electron-microscopic studies showed that reticulin fibres are composed of a small number of thin collagen fibrils, contrasting with the very many thicker fibrils that could be localized ultrastructurally to the sites where non-argyrophilic, coarse collagen fibres had been characterized by the histochemical methods used. The three different fibre types of the elastic system belong to a continuous series: oxytalan—elaunin—elastic (all of the fibre types comprising collections of microfibrils with, in the given sequence, increasing amounts of elastin). The three distinct types of elastic system fibres have different staining characteristics and ultrastructural patterns. Ultrastructurally, a characteristic elastic fibre consists of two morphologically different components: a centrally located solid cylinder of amorphous and homogeneous elastin surrounded by tubular microfibrils. An oxytalan fibre is composed of a bundle of microfibrils, identical to the elastic fibre microfibrils, without amorphous material. In elaunin fibres, dispersed amorphous material (elastin) is intermingled among the microfibrils.  相似文献   

2.
Summary Using only one histologic preparation and under the light microscope, the simple Picrosirius-polarization method permitted the histochemical characterization of the collagenous nature of amianthoid fibers infile cases of salivary gland tumors. In this regard the foregoing results agree with the electron microscopic and X-ray diffraction observations recorded in the literature. Not only did the Picrosirius-polarization method permit the precise characterization of the collagenous nature of asbestoid change but it was also useful for studying the degree of collagen polymerization in the lesion. Collagen molecules in the amianthoid fibers showed hyperpolymerization whereas the molecules in the compact areas were disoriented. Since the foregoing results demonstrate that the Picrosirius-polarization method is a simple and sensitive procedure for detecting asbestoid change in cartilage sections obtained from paraffin-embedded tissues, the usefulness of this technique for studying file cases is evident.Dedicated to Professor Dr. T.H. Schiebler on the occasion of his 65th birthday  相似文献   

3.
Summary Nerves and ganglia from a variety of fish, amphibian, reptilian and mammalian species were studied by optical and electron microscopy. Observations using the Picrosirius-polarization method strongly suggest that two different types of collagen fibers are present in the connective tissues of nerves and ganglia. Electron microscopy of nerves and ganglia showed the presence of two different collagen fibril populations, distinguishable on the basis of diameter, located in different compartments of these structures. Thicker fibrils are present in nerve and ganglionic epineurium. Thinner fibrils are present in the endoneurium, surrounding nerve fibers and ganglionic cells, and between the concentric layers of perineurial cells. These results were consistently observed in all species studied and very probably represent a general phenomenon in vertebrates.This work was aided by a grant from the Fundação de Amparo à Pesquisa do Estado de São Paulo  相似文献   

4.
The distribution of type I, III and V collagens in the monkey spleen was examined by indirect immunofluorescent microscopy and immunoelectron microscopy, and compared with that of reticular fibers revealed by a silver impregnation method. Type I collagen was localized on reticular fibers in the white pulps and on coarse reticular fibers in the splenic cords. Type III collagen was localized on the reticular fibers in the white pulps, and on the coarse reticular fibers and a limited number of fine reticular fibers, in the splenic cords. The anti-type V collagen antibody reacted with annular reticular fibers around the splenic sinuses, as well as with the reticular fibers in the white pulps and with the coarse and fine reticular fibers in the splenic cords. Thus, the distribution pattern of fibers that reacted with the anti-type V collagen antibody was very similar to that of the reticular fibers revealed by the silver impregnation method. Electron-microscopically, the fine reticular fibers in the splenic cords were composed of collagen fibrils, 30-50 nm in diameter, and amorphous substances. They were covered by reticular cell processes. By immunoperoxidase labeling with the anti-type V collagen antibody, electron-dense reaction products were found over the collagen fibrils with a banding pattern. These results indicate that type V collagen is an indispensable component of the reticular fibers.  相似文献   

5.
The coronary artery of the black Bengal goat was studied by light microscopy. The wall of the coronary artery consisted of the tunica intima, tunica media and tunica externa. The tunica intima consisted of a single layer of flattened endothelium. The tunica media was well-developed and composed of mainly of smooth muscle cells together with some fine elastic fibers. The tunica externa consisted of predominant collagen fibers, and some elastic fibers and smooth muscle cells. Elastic fibers in the tunica externa formed a circular arrangement around the tunica media. Sex differences were not observed. The media with well-developed smooth muscle cells may be responsible for changes in functional physiological conditions of the heart.  相似文献   

6.
Summary The distribution of collagen types I, III, IV, and of fibronectin has been studied in the human dermis by light and electron-microscopic immunocytochemistry, using affinity purified primary antibodies and tetramethylrhodamine isothiocyanate-conjugated secondary antibodies. Type I collagen was present in all collagen fibers of both papillary and reticular dermis, but collagen fibrils, which could be resolved as discrete entities, were labeled with different intensity. Type III collagen codistributed with type I in the collagen fibers, besides being concentrated around blood vessels and skin appendages. Coexistence of type I and type III collagens in the collagen fibrils of the whole dermis was confirmed by ultrastructural double-labelling experiments using colloidal immunogold as a probe. Type IV collagen was detected in all basement membranes. Fibronectin was distributed in patches among collagen fibers and was associated with all basement membranes, while a weaker positive reaction was observed in collagen fibers. Ageing caused the thinning of collagen fibers, chiefly in the recticular dermis. The labeling pattern of both type I and III collagens did not change in skin samples from patients of up to 79 years of age, but immunoreactivity for type III collagen increased in comparison to younger skins. A loss of fibronectin, likely related to the decreased morphogenetic activity of tissues, was observed with age.  相似文献   

7.
The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bone formation contained type IX collagen, whereas periosteal and membranous bones were negative. The thin collagenous fibrils in cartilage consisted of type II collagen as determined by immunoelectron microscopy. Type IX collagen was associated with the fibrils but essentially was restricted to intersections of the fibrils. These observations suggested that type IX collagen contributes to the stabilization of the network of thin fibers of the extracellular matrix of cartilage by interactions of its triple helical domains with several fibrils at or close to their intersections.  相似文献   

8.
The results of this study dealing with the human thoracic foetal aorta testify that even in the middle of the fifth month of development the internal elastic membrane is not yet completely continuous. Furthermore they show that elastogenesis in the tunica media of the human thoracic aorta does not begin directly below the internal elastic membrane, as it does in the foetal aorta of the laboratory rat, but, as it can be seen in our material, somewhat deeper in the developing tunica media. A thin layer of less differentiated tunica media cells persists for a long time in the vicinity of the internal elastic membrane. In the middle of the fifth month, the fusing elastic membrane segments in the tunica media still consist of very immature elastic tissue with a large proportion of the microfibrillar component. The collagen fibrils in the intercellular spaces in the whole depth of the wall of the developing aorta do not become a part of the elastic membranes. Their bundles merely accompany all the elastic membranes in the wall of the thoracic aorta, including the internal elastic membrane.  相似文献   

9.
Summary The following basement membranes (BMs) from representative species of the main vertebrate classes were studied by the Picrosirius-polarization method: lens capsule, Reichert's membrane and glomerular BMs. A distinct birefringence was consistently observed in all BMs from all species studied by this method. The results reported provide a strong evidence for collagen macromolecular orientation in BMs. Heparitin sulphate was the only glycosaminoglycan detected in dog lens capsules.  相似文献   

10.
Histochemical and morphological characterization of reticular fibers   总被引:3,自引:0,他引:3  
The results presented in this paper show that collagen fibers can be clearly distinguished from reticular fibers using the picrosirius-polarization method. A morphologic and morphometric study of these two types of fibers with electron microscopy shows that reticular fibers are characterized by the smaller diameter of their fibrillar components and the higher content of interfibrillar material, resulting in a loose arrangement of the fibrils. The evidences presented suggest that the amorphous matrix in which fibrils are embedded is responsible for the silver impregnation of reticular fibers. Our results show that the matrix of reticular fibers is characteristically rich in heparitin sulfate, and that the glycosaminoglycans present show a high interaction with the fibrillar component of these fibers.  相似文献   

11.
Summary The results presented in this paper show that collagen fibers can be clearly distinguished from reticular fibers using the picrosirius-polarization method. A morphologic and morphometric study of these two types of fibers with electron microscopy shows that reticular fibers are characterized by the smaller diameter of their fibrillar components and the higher content of interfibrillar material, resulting in a loose arrangement of the fibrils. The evidences presented suggest that the amorphous matrix in which fibrils are embedded is responsible for the silver impregnation of reticular fibers. Our results show that the matrix of reticular fibers is characteristically rich in heparitin sulfate, and that the glycosaminoglycans present show a high interaction with the fibrillar component of these fibers.  相似文献   

12.
Summary The organization of collagen fibrils in the rat sciatic nerve was studied by scanning electron microscopy after digestion of cellular elements by sodium hydroxide treatment, and by conventional transmission electron microscopy. The epineurium consisted mainly of thick bundles of collagen fibrils measuring about 10–20 m in width; they were wavy and ran slightly obliquely to the nerve axis. Between these collagen bundles, a very coarse meshwork of randomly oriented collagen fibrils was present. In the perineurium, collagen fibrils occupied the interspaces between the concentrically arranged perineurial cells; in each interspace, they formed a sheet of characteristic lacework elaborately interwoven by thin (about 3 m or less in width) bundles of collagen fibrils. In the subperineurial region, there was a distinct sheet of densely woven collagen fibrils between the perineurium and underlying endoneurial fibroblasts. In the endoneurium, collagen fibrils surrounded individual nerve fibers in two layers as scaffolds: the inner layer was made up of a delicate meshwork of very fine collagen fibrils, and the outer one consisted of longitudinally oriented bundles of about 1–3 m in width. The collagen fibril arrangement described above may protect the nerve fibers against external forces.  相似文献   

13.
Peripheral nerves are complex histological structures that can be affected by a variety of conditions with different degree of axonal degeneration and demyelination. For the study of peripheral nerve regeneration in pathology and tissue engineering, it is necessary to evaluate the regeneration, remyelination and extracellular matrix reorganization of the neural tissue. Currently, different histochemical techniques must be used in parallel, and a correlation among their findings should be further performed. In this work, we describe a new histochemical method for myelin and collagen fibers based on luxol fast blue and picrosirius methods, for the evaluation of the morphology, the myelin sheath and the collagen fiber reorganization using a model of peripheral nerve regeneration. Whole brain, normal sciatic nerve and regenerating peripheral nerve samples were fixed in 10% neutral buffered formalin and paraffin-embedded, for the performance of the hematoxylin-eosin stain, the Luxol fast blue method and the new histochemical method for myelin and collagen. The results of this technique revealed that this new histochemical method allowed us to properly evaluate histological patterns, and simultaneously observe the histochemical reaction for myelin sheath and collagen fibers in normal tissue, and during the regeneration process. In conclusion, this new method combines morphological and histochemical properties that allowed us to determine with high accuracy the degree of remyelination and collagen fibers reorganization. For all these reasons, we hypothesize that this new histochemical method could be useful in pathology and tissue engineering.  相似文献   

14.
The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100-microm thick fibrillar collagen matrices and cultured for 24 h in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p<0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase-dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction.  相似文献   

15.
Summary Rat mesenteric arteries, perfusion fixed in relaxed or contracted conditions, were digested with acid and elastase, bleach (sodium hypochlorite), or alkali to selectively remove collagen, elastin, or cells. Scanning electron microscopy was used to study the three-dimensional organization of the remaining cells or extracellular components. Smooth muscle cells of the tunica media were elongated and circumferentially oriented. Superior mesenteric artery cells had an irregular surface with numerous projections and some ends were forked. Small mesenteric artery cells were spindle shaped with longitudinal surface ridges, and showed extensive corrugations upon contraction. Elastin was present both as laminae and as an interconnected fibrous meshwork. Collagen was arranged in an irregular network of individual fibrils and small bundles of fibrils that formed nests around the cells in both arteries. This irregular arrangement persisted, with no apparent reordering or loss of order, upon contraction. The lack of an ordered arrangement or specialized organization at the cell ends suggests mechanical coupling of the cells to elastin or collagen throughout the length of the cell, allowing for force transmission in a number of directions. The tunica media is thus a composite material consisting of cells, elastin, and collagen. The isotropic network of fibers is well suited for transmitting the shearing forces placed on it by contraction of smooth muscle cells and by pressure-induced loading.  相似文献   

16.
The innervation pattern in the buffalo testis was determined by using histochemical and immunohistochemical methods. Nerves were concentrated in the tunica albuginea and septula testis, and did not show an uniform distribution. The tunica albuginea at the lateral and medial sides and at the free border of the testis is most densely innervated than at the epididymal border. At the cranial pole thick nerve bundles were observed between albugineal vessels and muscle bundles. Rare parenchymal nerves were found in perivascular position between seminiferous tubules and their occurrence is confined to lobules at the cranial and caudal testicular poles. An intense NPY immunoreactivity occurred in nerve bundles and in solitary varicose fibres. Nerves were concentrated in the tunica albuginea at the lateral and medial side and at the free border of the testis, and in the lobules at the cranial and caudal testicular poles. Sub P immunoreactivity was occasionally detected in some thicker nerve bundles and solitary fibers, in the tunica albuginea and in the wall of blood vessels, showing a similar distribution but less intensity and density than NPY immunoreactivity. TH immunoreactivity stained nerve fibers in the buffalo testis with a distribution pattern similar to that obtained with general neuronal markers. The histochemical reaction for AchE was negative, so cholinergic fibers cannot be detected in the buffalo testis. The histochemical NADPHd reaction stained rare nitrergic nerve bundles and solitary fibers. The majority of NADPHd activity was confined to the vascular endothelium, and rarely to the interstitial Leydig cells, whereas the Sertoli and germ cells did not show any reaction.  相似文献   

17.
In a sheep model the posterior cruciate ligament (PCL) was replaced by a patellar tendon autograft (PTAG) using the central one-third of the ipsilateral patellar tendon (PT). The sheep were sacrificed at 16, 26, 52 and 104 weeks postoperation. The PTAG, and, as controls, the contralateral PCL and PT were harvested. These were examined using biomechanical testing as well as light and transmission electron microscopy, including immunohistological techniques. The material properties (maximum stress, elastic modulus) were compared to the morphological features. The cellular distribution, the distribution of glycosaminoglycans (GAGs), the collagen fibril diameter and the occurrence of Type III collagen were studied. Prior to transplantation, the PTAG was shown to be superior in maximum stress (57.2 +/- 5.5 MPa vs 41.3 +/- 1.9 MPa) and elastic modulus (368.8 +/- 49.3 MPa vs 172.3 +/- 14.6 MPa) to the PCL. The early decline in material properties of the PTAG (maximum stress 22% and elastic modulus 42% of the control) after free grafting paralleled a cell- and capillary-rich PTAG tissue with remnants of necrosis and a poorly organized extracellular matrix. Two years after implantation, with progressive alignment of the tissue matrix, maximum stress and elastic modulus acquired approximately 60 and 70% of the control, respectively. However, there was also an evidence of degenerative changes characterized by acellular areas, loss of the normal bundling pattern of collagen fibers and abnormal accumulation of GAGs. Ultrastructurally, there was a predominant shift to thin collagen fibrils in the PTAG compared to PCL and PT, both consisting of thick and thin collagen fibrils. Thin fibrils were demonstrated to be, in part, split thick fibrils as well as newly formed fibrils. Most of these thin fibrils revealed a positive reaction with antibodies to Type III collagen.  相似文献   

18.
Collagen self-assembly and the development of tendon mechanical properties   总被引:1,自引:0,他引:1  
The development of the musculoskeleton and the ability to locomote requires controlled cell division as well as spatial control over deposition of extracellular matrix. Self-assembly of procollagen and its final processing into collagen fibrils occurs extracellularly. The formation of crosslinked collagen fibers results in the conversion of weak liquid-like embryonic tissues to tough elastic solids that can store energy and do work. Collagen fibers in the form of fascicles are the major structural units found in tendon. The purpose of this paper is to review the literature on collagen self-assembly and tendon development and to relate this information to the development of elastic energy storage in non-mineralizing and mineralizing tendons. Of particular interest is the mechanism by which energy is stored in tendons during locomotion. In vivo, collagen self-assembly occurs by the deposition of thin fibrils in recesses within the cell membrane. These thin fibrils later grow in length and width by lateral fusion of intermediates. In vitro, collagen self-assembly occurs by both linear and lateral growth steps with parallel events seen in vivo; however, in the absence of cellular control and enzymatic cleavage of the propeptides, the growth mechanism is altered, and the fibrils are irregular in cross section. Results of mechanical studies suggest that prior to locomotion the mechanical response of tendon to loading is dominated by the viscous sliding of collagen fibrils. In contrast, after birth when locomotion begins, the mechanical response is dominated by elastic stretching of crosslinked collagen molecules.  相似文献   

19.
Summary The influence of tissue section thickness on the color and intensity of birefringence displayed by collagen in tissue sections studied by means of the Picrosirius-polarization method, is reported in this paper. When dermal collagen sections of different thicknesses (ranging from 0.25 to 11 m) were studied by this method, it became evident that not only did the intensity of birefringence increase proportionally to tissue section thickness, as was to be expected, but also a gradual shift in color from green through yellow to red could be observed as tissue section thickness increased. The limitations of the Picrosirius-polarization method for the localization of collagen types I, II, and III in routinely used histological slides is discussed, showing that this method is useful for the study of the distribution of the different types of interstitial collagen in normal adult vertebrate organs.  相似文献   

20.
A new technique which brilliantly colors collagen fibers in a field of polarized light reveals that during mid-life the smooth muscle cells in the tunica media of the human aorta begin to disappear. The connective tissue is divided between two regions; one below the subintimal layer and the other under the adventitia. Fine collagen fibers extend upward from the former into the subintima and beyond into the intima and the overlying atheromatous plaques of the aging aorta. Thus, the source of fibrous thickening of the vessel is not confined solely to the intimal layer; at least, a portion of the total collagen content arises deep within the aortic wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号