首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on wide‐field time‐correlated single photon counting (TCSPC)‐based fluorescence lifetime imaging microscopy (FLIM) with lightsheet illumination. A pulsed diode laser is used for excitation, and a crossed delay line anode image intensifier, effectively a single‐photon sensitive camera, is used to record the position and arrival time of the photons with picosecond time resolution, combining low illumination intensity of microwatts with wide‐field data collection. We pair this detector with the lightsheet illumination technique, and apply it to 3D FLIM imaging of dye gradients in human cancer cell spheroids, and C. elegans.  相似文献   

2.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

3.
Summary The equilibrium binding mechanism and kinetics of binding of diS–C3-(5) (3,3-dipropylthiodicarbocyanine iodide) to rabbit renal brush-border membrane vesicles (BBMV) were examined using steady-state and time-resolved fluorescence, and fluorescence stopped-flow methods. In aqueous solution, diS–C3-(5) exists as a monomer at concentrations <5 m with fluorescence emission peak at 670 nm (excitation 622 nm), anisotropyr=0.102, and lifetime =1.2 nsec (23°C). Upon addition of increasing BBMV (voltage clamped to 0 mV using K+/valinomycin), the 670 nm emission peak decreases, corresponding to formation of a nonfluorescent membrane dimer, and subsequently a new emission peak at 695 nm increases, corresponding to membrane monomer. Dynamic depolarization studies show that aqueous diS–C3-(5) rotation is unhindered with a rotational rateR=0.57 nsec–1 while membrane monomer is hindered with steady-state anisotropyr=0.190, lifetime =2.1 nsec,R=0.58 nsec–1 and limiting anisotropyr =0.11. Based on equilibrium fluorescence titrations, the membrane monomer-dimer (M-D) dissociation constant,K d=[M]2/[D][BBMV], is 0.0013, where BBMV is expressed as membrane phospholipid concentration. Three distinct kinetic processes are identified by stopped-flow experiments in which BBMV are mixed with diS–C3-(5). There is rapid binding of diS–C3-(5) to the membrane to form bound monomer with a 6-msec exponential time constant. The membrane monomer at the membrane outer surface then aggregates to form bound dimer at the outer surface with a concentration independent time constant of 30 msec. The overall dimerization reaction probably consists of a rate-limiting reorientation process (30 msec) followed by a rapid dimerization which occurs on a nanosecond time scale. Finally, there is a 0.8 to 1 sec translocation of membrane dimer between symmetric sites at the inner and outer membrane surfaces. The translocation reaction is the step which is probably sensitive to changes in transmembrane electrical potential.  相似文献   

4.
Genetically encoded voltage indicators (GEVIs) can report cellular electrophysiology with high resolution in space and time. Two-photon (2P) fluorescence has been explored as a means to image voltage in tissue. Here, we used the 2P electronic excited-state lifetime to probe absolute membrane voltage in a manner that is insensitive to the protein expression level, illumination intensity, or photon detection efficiency. First, we tested several GEVIs for 2P brightness, response speed, and voltage sensitivity. ASAP1 and a previously described citrine-Arch electrochromic Förster resonance energy transfer sensor (dubbed CAESR) showed the best characteristics. We then characterized the voltage-dependent lifetime of ASAP1, CAESR, and ArcLight under voltage-clamp conditions. ASAP1 and CAESR showed voltage-dependent lifetimes, whereas ArcLight did not. These results establish 2P fluorescence lifetime imaging as a viable means of measuring absolute membrane voltage. We discuss the prospects and improvements necessary for applications in tissue.  相似文献   

5.
Time‐correlated single photon counting is the “gold‐standard” method for fluorescence lifetime measurements and has demonstrated potential for clinical deployment. However, the translation of the technology into clinic is hindered by the use of ultrasensitive detectors, which make the fluorescence acquisition impractical with bright lighting conditions such as in clinical settings. We address this limitation by interleaving periodic fluorescence detection with synchronous out‐of‐phase externally modulated light source, thus guaranteeing specimen illumination and a fluorescence signal free from bright background light upon temporal separation. Fluorescence lifetime maps are generated in real‐time from single‐point measurements by tracking a reference beam and using the phasor approach. We demonstrate the feasibility and practicality of this technique in a number of biological specimens, including real‐time mapping of degraded articular cartilage. This method is compatible and can be integrated with existing clinical microscopic, endoscopic and robotic modalities, thus offering a new pathway towards label‐free diagnostics and surgical guidance in a number of clinical applications.  相似文献   

6.
Spectroscopic responses of the potentiometric probe 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide (DASPMI) were investigated in living cells by means of a time- and space-correlated single photon counting technique. Spatially resolved fluorescence decays from single mitochondria or only a very few organelles of XTH2 cells exhibited three-exponential decay kinetics. Based on DASPMI photophysics in a variety of solvents, these lifetimes were attributed to the fluorescence from the locally excited state, intramolecular charge transfer state, and twisted intramolecular charge transfer state. A considerable variation in lifetimes among mitochondria of different morphologies and within single cells was evident, corresponding to high physiological variations within single cells. Considerable shortening of the short lifetime component (τ1) under a high-membrane-potential condition, such as in the presence of ATP and/or substrate, was similar to quenching and a dramatic decrease of lifetime in polar solvents. Under these conditions τ2 and τ3 increased with decreasing contribution. Inhibiting respiration by cyanide resulted in a notable increase in the mean lifetime and a decrease in mitochondrial fluorescence. Increased DASPMI fluorescence under conditions that elevate the mitochondrial membrane potential has been attributed to uptake according to Nernst distributions, delocalization of π-electrons, quenching processes of the methyl pyridinium moiety, and restricted torsional dynamics at the mitochondrial inner membrane. Accordingly, determination of anisotropy in DASPMI-stained mitochondria in living cells revealed a dependence of anisotropy on the membrane potential. The direct influence of the local electric field on the transition dipole moment of the probe and its torsional dynamics monitor changes in mitochondrial energy status within living cells.  相似文献   

7.
Second-harmonic generation (SHG) by membrane-incorporated probes is a nonlinear optical signal that is voltage-sensitive and the basis of a sensitive method for imaging membrane potential. The voltage dependence of SHG by four different probes, three retinoids (all-trans retinal), and two new retinal analogs, 3-methyl-7-(4′-dimethylamino-phenyl)-2,4,6-heptatrienal (AR-3) and 3,7-dimethyl-9-(4′-dimethylamino-phenyl)-2,4,6,8-nonatetraenal (AR-4), and a styryl dye (FM4-64), were compared in HEK-293 cells. Results were analyzed by fitting data with an expression based on an electrooptic mechanism for SHG, which depends on the complex-valued first- and second-order nonlinear electric susceptibilities (χ2 and χ3) of the probe. This gave values for the voltage sensitivity at the cell's resting potential, the voltage where the SHG is minimal, and the amplitude of the signal at that voltage for each of the four compounds. These measures show that χ2 and χ3 are complex numbers for all compounds except all-trans retinal, consistent with the proximities of excitation and/or emission wavelengths to molecular resonances. Estimates of probe orientation and location in the membrane electric field show that, for the far-from-resonance case, the shot noise-limited signal/noise ratio depends on the location of the probe in the membrane, and on χ3 but not on χ2.  相似文献   

8.
Chemotrophic microorganisms gain energy for cellular functions by catalyzing oxidation–reduction (redox) reactions that are out of equilibrium. Calculations of the Gibbs energy ( ΔG r ) can identify whether a reaction is thermodynamically favourable and quantify the accompanying energy yield at the temperature, pressure and chemical composition in the system of interest. Based on carefully calculated values of ΔG r , we predict a novel microbial metabolism – sulfur comproportionation (3H2S + + 2H+ ⇌ 4S0 + 4H2O). We show that at elevated concentrations of sulfide and sulfate in acidic environments over a broad temperature range, this putative metabolism can be exergonic ( ΔG r <0), yielding ~30–50 kJ mol−1. We suggest that this may be sufficient energy to support a chemolithotrophic metabolism currently missing from the literature. Other versions of this metabolism, comproportionation to thiosulfate (H2S + ⇌ + H2O) and to sulfite (H2S + 3 ⇌ 4 + 2H+), are only moderately exergonic or endergonic even at ideal geochemical conditions. Natural and impacted environments, including sulfidic karst systems, shallow-sea hydrothermal vents, sites of acid mine drainage, and acid–sulfate crater lakes, may be ideal hunting grounds for finding microbial sulfur comproportionators.  相似文献   

9.
This study developed a portable, low-cost field respirometer for measuring oxygen consumption rates of large-bodied fishes. The respirometer performed well in laboratory tests and was used to measure the oxygen consumption rates ( O2) of bull sharks Carcharhinus leucas (mean: 249.21 ± 58.10 mg O2 kg−1 h−1 at 27.05°C). Interspecific comparisons and assessments of oxygen degradation curves indicated that the respirometer provided reliable measurements of O2. This system presents a field-based alternative to laboratory respirometers, opening opportunities for studies on species in remote localities, increasing the ability to validate physiological field studies.  相似文献   

10.
Current clinical brain imaging techniques used for surgical planning of tumor resection lack intraoperative and real‐time feedback; hence surgeons ultimately rely on subjective evaluation to identify tumor areas and margins. We report a fluorescence lifetime imaging (FLIm) instrument (excitation: 355 nm; emission spectral bands: 390/40 nm, 470/28 nm, 542/50 nm and 629/53 nm) that integrates with surgical microscopes to provide real‐time intraoperative augmentation of the surgical field of view with fluorescent derived parameters encoding diagnostic information. We show the functionality and safety features of this instrument during neurosurgical procedures in patients undergoing craniotomy for the resection of brain tumors and/or tissue with radiation damage. We demonstrate in three case studies the ability of this instrument to resolve distinct tissue types and pathology including cortex, white matter, tumor and radiation‐induced necrosis. In particular, two patients with effects of radiation‐induced necrosis exhibited longer fluorescence lifetimes and increased optical redox ratio on the necrotic tissue with respect to non‐affected cortex, and an oligodendroglioma resected from a third patient reported shorter fluorescence lifetime and a decrease in optical redox ratio than the surrounding white matter. These results encourage the use of FLIm as a label‐free and non‐invasive intraoperative tool for neurosurgical guidance.  相似文献   

11.
In this study the influence of hydrogen peroxide (H2O2) on the redox state, NADH protein binding, and mitochondrial membrane potential in Müller cells is investigated. Cultures of permanent human Müller cells MIO‐M1 were exposed to H2O2 in 75 µM and 150 µM concentration for two hours. Fluorescence emission spectra and lifetimes were measured by two‐photon microscopy (excitation wavelength: 740 nm) at the mitochondria which were identified in the microscopic images by their fluorescence properties (spectra and intensity). Two hours of H2O2 exposure did not impair viability of MIO‐M1 cells in culture. Whereas the ratio of flavine‐ to NADH fluorescence intensity did not change under either H2O2 concentration, the mean lifetime was significantly different between controls, not exposed to H2O2, and the 150 µM H2O2 exposure (972 ± 63 ps vs. 1152 ± 64 ps, p = 0.014). One hour after cessation of the H2O2 exposure, the value retuned to that of the control (983 ± 36 ps). A hyperpolarization of the mitochondrial membrane under 150 µM H2O2 was found. These findings suggest a shift form free to protein‐bound NADH in mitochondria as well as a hyperpolarization of their inner membrane which could be related to an impairment of Müller cell function despite their preserved viability.

Exposure of human Müller cells to hydrogen peroxide for two hours results in a reversible change of protein binding of mitochondrial NADH upon unchanged redox ratio. The mitochondrial membrane potential is increased during exposure.  相似文献   


12.
Fluorescent protein voltage sensors are recombinant proteins that are designed as genetically encoded cellular probes of membrane potential using mechanisms of voltage-dependent modulation of fluorescence. Several such proteins, including VSFP2.3 and VSFP3.1, were recently reported with reliable function in mammalian cells. They were designed as molecular fusions of the voltage sensor of Ciona intestinalis voltage sensor containing phosphatase with a fluorescence reporter domain. Expression of these proteins in cell membranes is accompanied by additional dynamic membrane capacitance, or “sensing capacitance”, with feedback effect on the native electro-responsiveness of targeted cells. We used recordings of sensing currents and fluorescence responses of VSFP2.3 and of VSFP3.1 to derive kinetic models of the voltage-dependent signaling of these proteins. Using computational neuron simulations, we quantitatively investigated the perturbing effects of sensing capacitance on the input/output relationship in two central neuron models, a cerebellar Purkinje and a layer 5 pyramidal neuron. Probe-induced sensing capacitance manifested as time shifts of action potentials and increased synaptic input thresholds for somatic action potential initiation with linear dependence on the membrane density of the probe. Whereas the fluorescence signal/noise grows with the square root of the surface density of the probe, the growth of sensing capacitance is linear. We analyzed the trade-off between minimization of sensing capacitance and signal/noise of the optical read-out depending on kinetic properties and cellular distribution of the probe. The simulation results suggest ways to reduce capacitive effects at a given level of signal/noise. Yet, the simulations indicate that significant improvement of existing probes will still be required to report action potentials in individual neurons in mammalian brain tissue in single trials.  相似文献   

13.
14.
Fungal denitrification is claimed to produce non-negligible amounts of N2O in soils, but few tested species have shown significant activity. We hypothesized that denitrifying fungi would be found among those with assimilatory nitrate reductase, and tested 20 such batch cultures for their respiratory metabolism, including two positive controls, Fusarium oxysporum and Fusarium lichenicola, throughout the transition from oxic to anoxic conditions in media supplemented with . Enzymatic reduction of (NIR) and NO (NOR) was assessed by correcting measured NO- and N2O-kinetics for abiotic NO- and N2O-production (sterile controls). Significant anaerobic respiration was only confirmed for the positive controls and for two of three Fusarium solani cultures. The NO kinetics in six cultures showed NIR but not NOR activity, observed through the accumulation of NO. Others had NOR but not NIR activity, thus reducing abiotically produced NO to N2O. The presence of candidate genes (nirK and p450nor) was confirmed in the positive controls, but not in some of the NO or N2O accumulating cultures. Based on our results, we conclude that only the Fusarium cultures were able to sustain anaerobic respiration and produced low amounts of N2O as a response to an abiotic NO production from the medium.  相似文献   

15.
We present an endoscopic probe that combines three distinct optical fibre technologies including: A high-resolution imaging fibre for optical endomicroscopy, a multimode fibre for time-resolved fluorescence spectroscopy, and a hollow-core fibre with multimode signal collection cores for Raman spectroscopy. The three fibers are all enclosed within a 1.2 mm diameter clinical grade catheter with a 1.4 mm end cap. To demonstrate the probe's flexibility we provide data acquired with it in loops of radii down to 2 cm. We then use the probe in an anatomically accurate model of adult human airways, showing that it can be navigated to any part of the distal lung using a commercial bronchoscope. Finally, we present data acquired from fresh ex vivo human lung tissue. Our experiments show that this minimally invasive probe can deliver real-time optical biopsies from within the distal lung - simultaneously acquiring co-located high-resolution endomicroscopy and biochemical spectra.  相似文献   

16.
This analysis shows good intentions in the selection of valid and precise oxygen uptake (O2) measurements by retaining only slopes of declining dissolved oxygen level in a respirometer that have very high values of the coefficient of determination, r2, are not always successful at excluding nonlinear slopes. Much worse, by potentially removing linear slopes that have low r2 only because of a low signal-to-noise ratio, this procedure can overestimate the calculation of standard metabolic rate (SMR) of the fish. To remedy this possibility, a few simple diagnostic tools are demonstrated to assess the appropriateness of a given minimum acceptable r2, such as calculating the proportion of rejected O2 determinations, producing a histogram of the r2 values and a plot of r2 as a function of O2. The authors offer solutions for cases when many linear slopes have low r2. The least satisfactory but easiest to implement is lowering the minimum acceptable r2. More satisfactory solutions involve processing (smoothing) the raw signal of dissolved oxygen as a function of time to improve the signal-to-noise ratio and the r2s.  相似文献   

17.
The histopathological diagnosis of cancer is the current gold standard to differentiate normal from cancerous tissues. We propose a portable platform prototype to characterize the tissue's thermal and optical properties, and their inter-dependencies to potentially aid the pathologist in making an informed decision. The measurements were performed on 10 samples from five subjects, where the cancerous and adjacent normal were extracted from the same patient. It was observed that thermal conductivity (k) and reduced-scattering-coefficient (μ's) for both the cancerous and normal tissues reduced with the rise in tissue temperature. Comparing cancerous and adjacent normal tissue, the difference in k and μ's (at 940 nm) were statistically significant (p = 7.94e-3), while combining k and μ's achieved the highest statistical significance (6.74e-4). These preliminary results promise and support testing on a large number of samples for rapidly differentiating cancerous from adjacent normal tissues.  相似文献   

18.
One of the most challenging tasks in wildlife conservation and management is to clarify how spatial variation in land cover due to anthropogenic disturbance influences wildlife demography and long-term viability. To evaluate this, we compared rates of survival and population growth by woodland caribou (Rangifer tarandus caribou) from 2 study sites in northern Ontario, Canada that differed in the degree of anthropogenic disturbance because of commercial logging and road development, resulting in differences in predation risk due to gray wolves (Canis lupus). We used an individual-based model for population viability analysis (PVA) that incorporated adaptive patterns of caribou movement in relation to predation risk and food availability to predict stochastic variation in rates of caribou survival. Field estimates of annual survival rates for adult female caribou in the unlogged ( 0.90) and logged ( 0.76) study sites recorded during 2010–2014 did not differ significantly (P > 0.05) from values predicted by the individual-based PVA model (unlogged: = 0.87; logged: 0.79). Outcomes from the individual-based PVA model and a simpler stage-structured matrix model suggest that substantial differences in adult survival largely due to wolf predation are likely to lead to long-term decline of woodland caribou in the commercially logged landscape, whereas the unlogged landscape should be considerably more capable of sustaining caribou. Estimates of population growth rates (λ) for the 2010–2014 period differed little between the matrix model and the individual-based PVA model for the unlogged (matrix model = 1.01; individual-based model = 0.98) and logged landscape (matrix model = 0.88; individual-based model = 0.89). We applied the spatially explicit PVA model to assess the viability of woodland caribou across 14 woodland caribou ranges in Ontario. Outcomes of these simulations suggest that woodland caribou ranges that have experienced significant levels of commercial forestry activities in the past had annual growth rates <0.89, whereas caribou ranges that had not experienced commercial forestry operations had population growth rates >0.96. These differences were strongly related to regional variation in wolf densities. Our results suggest that increased wolf predation risk due to anthropogenic disturbance is of sufficient magnitude to cause appreciable risk of population decline in woodland caribou in Ontario. © 2020 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

19.
Curcumin has great potential as a photosensitizer, but it has low solubility in aqueous solutions. This study reports the antimicrobial efficacy of photodynamic inactivation (PDI) mediated by a curcumin-loaded liquid crystal precursor (LCP) on in situ dental biofilms. Thirty volunteers used intraoral devices containing enamel samples for 48 hours for biofilm formation. The samples were then removed from the device and treated either with LCP with 160 μM of curcumin plus illumination at 18 J/cm2 (C + L+ group) or with LCP without curcumin in the dark (C – L − group). Following this, the biofilm from the samples was plated for quantifying the viable colonies at 37°C for 48 hours. Specific and nonspecific media were used for the presumptive isolation of Streptococcus mutans, Lactobacillus species/aciduric microorganisms, Candida species, and total microbiota. The C + L+ group showed a highly significant (P < .001) reduction in the log10 (colony forming units/mL) values as compared to the C − L − group for all culture media. Hierarchical linear regression indicated that there may be predictors at individual volunteer level explaining the difference in the PDI efficacy among different individuals (P = .001). The LCP system retained curcumin and released it slowly and continuously, thus protecting the drug from photodegradation. LCP with curcumin is considered effective for the photoinactivation of dental biofilms, but the PDI efficacy may differ based on the host's individual characteristics.  相似文献   

20.
The delivery of macromolecules into living cells is challenging since in most cases molecules are endocytosed and remain in the endo‐lysosomal pathway where they are degraded before reaching their target. Here, a method is presented to selectively improve cell membrane permeability by nanosecond laser irradiation of gold nanorods (GNRs) with visible or near‐infrared irradiation in order to deliver proteins across the plasma membrane, avoiding the endo lysosomal pathway. GNRs were labeled with the anti‐EGFR (epidermal growth factor receptor) antibody Erbitux to target human ovarian carcinoma cells OVCAR‐3. Irradiation with nanosecond laser pulses at wavelengths of 532 nm or 730 nm is used for transient permeabilization of the cell membranes. As a result of the irradiation, the uptake of an anti‐Ki‐67 antibody was observed in about 50 % of the cells. The results of fluorescence lifetime imaging show that the GNR detached from the membrane after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号