共查询到20条相似文献,搜索用时 15 毫秒
1.
Steven M. Gray John M. Humphreys Robert A. Montgomery Dwayne R. Etter Kurt C. VerCauteren Daniel B. Kramer Gary J. Roloff 《The Journal of wildlife management》2022,86(4):e22211
Animal movement models can be used to understand species behavior and assist with implementation of management activities. We explored behavioral states of an invasive wild pig (Sus scrofa) population that recently colonized central Michigan, USA, 2014–2018. To quantify environmental factors related to wild pig movement ecology and spatio-temporal landscape use, we predicted wild pig behavioral states relative to land cover type, landscape structure (i.e., edge and patch cohesion), and weather conditions. We used global positioning system (GPS)-collars and monitored 8 wild pigs from 2014–2018. We fit local convex hulls and calculated movement metrics revealing 3 wild pig behavioral states (resting, exploratory, and relocating) and constructed a 3-level model to predict behavioral state probabilities relative to biotic and abiotic conditions. Probabilities of exploratory and resting behaviors were higher nearer to riparian and open herbaceous cover types (oftentimes emergent marsh), indicating that these cover types provided security cover during activity and bedding. Hard mast cover types had a strong positive association with relocating behaviors. More cohesive patches of agriculture and shrub cover types were associated with higher probabilities of exploratory behaviors, while resting was more likely in continuous patches of agriculture (mostly mid-summer corn). The probability of exploratory behaviors increased exponentially with warming ambient temperature. Our results may be used by managers to develop control strategies conducive to landscape and environmental conditions where the likelihood of encountering wild pigs is highest or targeting wild pigs when in a behavioral state most vulnerable to a particular removal technique. 相似文献
2.
3.
Anna M. Mangan Antoinette J. Piaggio Michael J. Bodenchuk Courtney F. Pierce Timothy J. Smyser 《The Journal of wildlife management》2021,85(8):1563-1573
Invasive wild pigs (Sus scrofa), also called feral swine or wild hogs, are recognized as among the most destructive invasive species in the world. Throughout the United States, invasive wild pigs have expanded rapidly over the past 40 years with populations now established in 38 states. Of the estimated 6.9 million wild pigs distributed throughout the United States, Texas supports approximately 40% of the population and similarly bears disproportionate ecological and economic costs. Genetic analyses are an effective tool for understanding invasion pathways and tracking dispersal of invasive species such as wild pigs and have been used recently in California and Florida, USA, which have similarly long-established populations and high densities of wild pigs. Our goals were to use molecular approaches to elucidate invasion and migration processes shaping wild pig populations throughout Texas, compare our results with patterns of genetic structure observed in California and Florida, and provide insights for effective management of this invasive species. We used a high-density single nucleotide polymorphism (SNP) array to evaluate population genetic structure. Genetic clusters of wild pigs throughout Texas demonstrate 2 distinct patterns: weakly resolved, spatially dispersed clusters and well-resolved, spatially localized clusters. The disparity in patterns of genetic structure suggests disparate processes are differentially shaping wild pig populations in various localities throughout the state. Our results differed from the patterns of genetic structure observed in California and Florida, which were characterized by localized genetic clusters. These differences suggest distinct biological and perhaps anthropogenic processes are shaping genetic structure in Texas. Further, these disparities demonstrate the need for location-specific management strategies for controlling wild pig populations and mitigating associated ecological and economic costs. © 2021 The Wildlife Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA. 相似文献
4.
Invasive wild pigs (Sus scrofa) are considered one of the most damaging species globally, and once they become established in an area, they are notoriously difficult to eliminate. As such, identifying the potential pathways of invasion, especially in places with emerging populations, is critical for preventing new or continued invasion. Wild pigs have been reported in Ontario, Canada, in recent years. We tested four nonexclusive hypotheses about the source of wild pigs in Ontario: (a) escapees from captive sources within Ontario; (b) invasion from neighboring jurisdictions; (c) existing wild populations within Ontario; and (d) translocation and illegal release. We found that sightings of Eurasian wild boar were closer to premises with wild boar than were random locations; wild boar sightings were an average of 16.3 km (SD = 25.4 km, min = 0.2 km, n = 20) from premises with wild boar. We also found that sightings of domestic pigs were closer to domestic pig farms than expected. Sightings of wild pigs in groups of more than four animals were rare. Our results suggest that wild pigs observed in Ontario are recent escapes from captivity, recognizing that there may be established groups of wild pigs that we have not yet detected. While not common, we also received reports indicating that in the past, wild pigs have been translocated and illegally released. Other North American jurisdictions that have been successful at eliminating wild pigs have removed existing populations and changed regulations to limit future invasion, such as prohibiting possession and transport of wild boar and prohibiting hunting of wild pigs. 相似文献
5.
Abstract: Feral pigs (Sus scrofa) have caused considerable damage where they have been introduced around the world. At Pinnacles National Monument, California, USA, managers were concerned that feral pigs were damaging wetland habitats, reducing oak regeneration, competing with native wildlife, and dispersing nonnative plant species through soil disturbance. To address these threats the National Park Service constructed an exclosure around 57 km2 of monument land and through cooperation with the Institute for Wildlife Studies eradicated all feral pigs within the area. Trapping, ground-hunting, hunting dogs, and Judas techniques were used to remove feral pigs. Trapping techniques removed most pigs, but a combination of techniques was required to cause eradication. A series of bait sites and transects across the monument helped focus removal efforts and facilitated detection of the last remaining feral pigs in the exclosure. Consistent funding and cooperation from the National Park Service allowed for a seamless and comprehensive program that provided intensive removal of feral pigs. The successful eradication of feral pigs at Pinnacles National Monument should encourage managers in other areas to implement future control or eradication programs. 相似文献
6.
Rachael M. Giglio;Courtney F. Bowden;Ryan K. Brook;Antoinette J. Piaggio;Timothy J. Smyser; 《Molecular ecology》2024,33(17):e17489
Globalization has led to the frequent movement of species out of their native habitat. Some of these species become highly invasive and capable of profoundly altering invaded ecosystems. Feral swine (Sus scrofa × domesticus) are recognized as being among the most destructive invasive species, with populations established on all continents except Antarctica. Within the United States (US), feral swine are responsible for extensive crop damage, the destruction of native ecosystems, and the spread of disease. Purposeful human-mediated movement of feral swine has contributed to their rapid range expansion over the past 30 years. Patterns of deliberate introduction of feral swine have not been well described as populations may be established or augmented through small, undocumented releases. By leveraging an extensive genomic database of 18,789 samples genotyped at 35,141 single nucleotide polymorphisms (SNPs), we used deep neural networks to identify translocated feral swine across the contiguous US. We classified 20% (3364/16,774) of sampled animals as having been translocated and described general patterns of translocation using measures of centrality in a network analysis. These findings unveil extensive movement of feral swine well beyond their dispersal capabilities, including individuals with predicted origins >1000 km away from their sampling locations. Our study provides insight into the patterns of human-mediated movement of feral swine across the US and from Canada to the northern areas of the US. Further, our study validates the use of neural networks for studying the spread of invasive species. 相似文献
7.
8.
Andrew Bengsen Luke Leung Steven Lapidge Iain Gordon 《Ecological Management & Restoration》2011,12(3):226-229
Mitigation of feral pig (Sus scrofa) impacts in Australia’s Wet Tropics World Heritage Area has been impeded by the lack of a target‐specific method for delivering toxic baits in the region. This study evaluated methods to reduce bait‐take by susceptible nontarget species without inhibiting bait‐take by pigs, to enable more effective pig management. We predicted that dingoes would not select an unprocessed corn bait and that other potential nontarget bait consumers would be unable to access the same bait presented under a lightweight cover. Neither of these methods was expected to reduce bait selection or access by pigs. We tested these predictions by monitoring animal interactions with covered and uncovered corn baits, and covered corn and manufactured baits. Use of corn as a bait substrate effectively prevented bait‐take by dingoes. Covering baits substantially reduced bait‐take by other nontarget species and completely prevented nontarget bait‐take when uncovered feed was provided simultaneously. The corn bait preparation was highly acceptable and accessible to feral pigs. We conclude that the methods evaluated here could enable the consideration of poison baiting as a viable method for controlling feral pigs in the World Heritage Area, where it has previously been unavailable. 相似文献
9.
Drought stress in tropical dry forests is thought to result in greater asexual regeneration via vegetative sprouting ( e.g ., basal, root, and branch layering) than occurs in moister tropical forests. We tested this hypothesis by examining the prevalence of tree sprouting and seeding in tropical forests located along a rainfall gradient on the island of Hawai'i. Additionally, we examined the potential for novel disturbance, feral pig Sus scrofa rooting and trampling, to alter patterns in tree regeneration mode. We found greater sprouting (in terms of relative density and basal area) in dry forests than in mesic and wet forests, supporting the hypothesis. We also found that feral pig disturbance is negatively correlated with the relative density and basal area of seedlings in wet forests, but is positively correlated with the relative importance of sprouting, and the richness and diversity of sprouting species. Our results suggest rainfall regimes may be an important factor controlling broad-scale patterns in tree regeneration mode, and that exotic ungulates can significantly modify such patterns with potential consequences for the structure and dynamics of tree populations and communities. 相似文献
10.
Michael J. Lavelle Kurt C. Vercauteren Trevor J. Hefley Gregory E. Phillips Scott E. Hygnstrom David B. Long Justin W. Fischer Seth R. Swafford Tyler A. Campbell 《The Journal of wildlife management》2011,75(5):1200-1208
Populations of feral swine (Sus scrofa) are estimated to include >2 million animals in the state of Texas, USA, alone. Feral swine damage to property, crops, and livestock exceeds $50 million annually. These figures do not include the increased risks and costs associated with the potential for feral swine to spread disease to domestic livestock. Thus, effective bio-security measures will be needed to quickly isolate affected feral swine populations during disease outbreaks. We evaluated enclosures built of 0.86-m-tall traditional hog panels for containing feral swine during 35 trials, each involving 6 recently caught animals exposed to increasing levels of motivation. During trials, fences were 97% successful when enclosures were entered by humans for maintenance purposes; 83% effective when pursued by walking humans discharging paintball projectors; and in limited testing, 100% successful when pursued and removed by gunners in a helicopter. In addition to being effective in containing feral swine, enclosures constructed of hog panels required simple hand tools, took <5 min/m to erect, and were inexpensive ($5.73/m excluding labor) relative to other fencing options. As such, hog-panel fences are suitable for use by state and federal agencies for rapid deployment in disease response situations, but also exhibit utility for general control of other types of damage associated with feral swine. © 2011 The Wildlife Society. 相似文献
11.
GIOVANNA MASSEI JULIA COATS ROGER QUY KATE STORER DAVE P. COWAN 《The Journal of wildlife management》2010,74(2):333-336
ABSTRACT Bait-delivered pharmaceuticals, increasingly used to manage populations of wild boar (Sus scrofa) and feral pigs, may be ingested by nontarget species. Species-specificity could be achieved through a delivery system. We designed the BOSTM (Boar-Operated-System) as a device to deliver baits to wild pigs. The BOSTM consists of a metal pole onto which a round perforated base is attached. A metal cone with a wide rim slides up and down the pole and fully encloses the base onto which the baits are placed. We conducted a pilot, captive trial and found that captive wild boar fed from the BOSTM either directly, by lifting the cone, or indirectly, by feeding once another animal had lifted the cone. Thus, we tested whether free-living wild boar fed from the BOSTM and whether the BOSTM could prevent bait uptake by nontarget species. We observed that free-living wild boar fed regularly from the BOSTM and that the device successfully prevented bait uptake by nontarget species. The BOSTM should be trialed more extensively to confirm its effectiveness and species-specificity to distribute pharmaceuticals to wild suids. If successful, the BOSTM could be used to deliver vaccines in disease control programs as well as contraceptives to manage overabundant populations of wild suids. 相似文献
12.
The phylogeography of wild boars (WB) and domestic pigs (Sus scrofa) has contributed important insights into where and when domestication occurred. The geographic distribution of two core haplotypes (E1a and E1c) of the main European phylogenetic clade suggests that Central Europe was an early domestication centre, although the complexity of the pattern does not exclude the possibility that multiple domestication events occurred in different regions. To investigate the relationships among WB and domestic pig breeds in Iberia, a fragment of the mitochondrial DNA control region from a large sample (n = 409) of WB and local pig breeds was co‐analysed with published sequences from other European populations. The Iberian sample revealed a high frequency of a sub‐cluster (E1c) of the European haplogroup E1 in 77% of total Iberian samples, 96% of WB, 90% of Alentejano (Portugal) and 87% of Iberian breed pigs (Spain; Black Hairy, Black Hairless and Red varieties). Low genetic distance (F’ST = 0.105) was observed between Alentejano (Portugal) and Iberian breed pigs (Spain). Alentejano and Iberian breed pigs showed low genetic distances to both Iberian and Central European WB (average F’ST = 0.345 and 0.215, respectively). This pattern suggests that early pig husbandry in the Iberian Peninsula did not solely rely on imported Central European stock, but also included the recruitment of local WB. 相似文献
13.
14.
Andrew J. Bengsen Luke K.-P. Leung Steven J. Lapidge Iain J. Gordon 《The Journal of wildlife management》2011,75(5):1222-1227
The lack of variance estimates constrain the utility of abundance indices calculated from camera-trap data. We adapted a General Index model, which allows variance estimation, to analyze camera-trap observations of feral pigs (Sus scrofa) for population monitoring in a tropical rainforest. We tested whether the index would respond to population manipulation, and found that it decreased by 57% following removal of 24 pigs and remained low in the following period. Our method is useful for monitoring other large animals in difficult landscapes, and the model can be used to enhance the value of existing data sets. © 2011 The Wildlife Society. 相似文献
15.
TYLER A. CAMPBELL DAVID B. LONG BRUCE R. LELAND 《The Journal of wildlife management》2010,74(2):337-341
ABSTRACT Feral swine (Sus scrofa) impact resources through their destructive feeding behavior, competition with native wildlife, and impacts to domestic animal agriculture. We studied aerial gunning on feral swine to determine if aerial gunning altered home range and core area sizes, distances between home range centroids, and distances moved by surviving individuals. We collected data before, during, and after aerial gunning in southern Texas. Using Global Positioning System collars deployed on 25 adult feral swine at 2 study sites, we found home range and core area sizes did not differ before and after aerial gunning. However, feral swine moved at a greater rate during the aerial gunning phase than during the before and after periods. We concluded that aerial gunning had only minor effects on the behavior of surviving swine and that this removal method should be considered a viable tool in contingency planning for a foreign animal disease outbreak. 相似文献
16.
Steven M. Gray Gary J. Roloff Daniel B. Kramer Dwayne R. Etter Kurt C. Vercauteren Robert A. Montgomery 《The Journal of wildlife management》2020,84(4):739-748
In North America, wild pigs (Sus scrofa; feral pigs, feral swine, wild boars) are a widespread exotic species capable of creating large-scale biotic and abiotic landscape perturbations. Quantification of wild pig environmental effects has been particularly problematic in northern climates, where they occur only recently as localized populations at low densities. Between 2016 and 2017, we assessed short-term (within ~2 yrs of disturbance) effects of a low-density wild pig population on forest features in the central Lower Peninsula of Michigan, USA. We identified 16 8-ha sites using global positioning system locations from 7 radio-collared wild pigs for sampling. Within each site, we conducted fine-scale assessments at 81 plots and quantified potential disturbance by wild pigs. We defined disturbance as exposure of overturned soil, often resulting from rooting behavior by wild pigs. We quantified ground cover of plants within paired 1-m2 frames at each plot, determined effects to tree regeneration using point-centered quarter sampling, and collected soil cores from each plot. We observed less percent ground cover of native herbaceous plants and lower species diversity, particularly for plants with a coefficient of conservatism ≥5, in plots disturbed by wild pigs. We did not observe an increase in colonization of exotic plants following disturbance, though the observed prevalence of exotic plants was low. Wild pigs did not select for tree species when rooting, and we did not detect any differences in regeneration of light- and heavy-seeded tree species between disturbed or undisturbed plots. Magnesium and ammonium content in soils were lower in disturbed plots, suggesting soil disturbance accelerated leaching of macronutrients, potentially altering nitrogen transformation. Our study suggested that disturbances by wild pigs, even at low densities, alters short-term native herbaceous plant diversity and soil chemistry. Thus, small-scale exclusion of wild pigs from vulnerable and rare plant communities may be warranted. © 2020 The Wildlife Society. 相似文献
17.
Carolina Baruzzi Nathan P. Snow Kurt C. Vercauteren Bronson K. Strickland Jacques S. Arnoult Justin W. Fischer Michael P. Glow Michael J. Lavelle Benjamin A. Smith Daryl Steakley Marcus A. Lashley 《Ecology and evolution》2023,13(3)
Wild pigs (Sus scrofa) are invading many areas globally and impacting biodiversity and economies in their non‐native range. Thus, wild pigs are often targeted for eradication efforts. Age‐ and sex‐specific body measurements are important for informing these eradication efforts because they reflect body condition, resource availability, and fecundity, which are common indicators of population trajectory. However, body mass is often difficult to collect, especially on large individuals that require specialized equipment or multiple people to weigh. Measurements that can be rapidly taken by a single land or wildlife manager on any size wild pig without aid from specialized equipment would be beneficial if they accurately infer wild pig body mass. Our goals were to assess whether morphometric measurements could accurately predict wild pig body mass, and to provide tools to directly input these measures and estimate wild pig body mass. Using linear models, we quantified the relationship between body mass and morphometric measurements (i.e., body length, chest girth, ear length, eye to snout length, hindfoot length, shoulder length, and tail length) from a subset (n = 102) of wild pigs culled at the Mississippi Alluvial Valley, Mississippi, USA. We evaluated separate models for each individual morphometric measurement. We then used the model coefficients to develop equations to predict wild pig body mass. We validated these equations predicting body mass of 1592 individuals collected across eight areas in Australia, Guam, and the USA for cross‐validation. Each developed equation remained accurate when cross‐validated across regions. Body length, chest girth, and shoulder length were the morphometrics that best predicted wild pig body mass. Our analyses indicated it is possible to use the presented equations to infer wild pig body mass from simple metrics. 相似文献
18.
Heather N. Sanders David G. Hewitt Humberto L. Perotto-Baldivieso Kurt C. Vercauteren Nathan P. Snow 《The Journal of wildlife management》2020,84(2):293-300
Wild pigs (Sus scrofa; i.e., feral hogs, feral swine) are considered an invasive species in the United States. Where they occur, they damage agricultural crops and wildlife habitat. Wild pigs also depredate native wildlife, particularly ground-nesting bird species during nesting season. In areas inhabited by wild turkeys (Meleagris gallopavo), nest destruction caused by wild pigs may affect recruitment. There is debate whether wild pigs actively seek ground-nesting bird nests or depredate them opportunistically. To address this debate, in 2016 we examined the movements of wild pigs relative to artificial wild turkey nests (i.e., control [no artificial nests], moderate density [12.5–25 nests/km2], and high density [25–50 nests/km2]) throughout the nesting season (i.e., early, peak, and late) in south-central Texas, USA. We found no evidence that wild pigs learned to seek and depredate wild turkey nests relative to nest density or nesting periods. Despite wild pigs being important nest predators, depredation was not a functional response to a pulsed food resource and can only be associated with overlapping densities of wild pigs and nests. Protecting reproductive success of wild turkeys will require reducing wild pig densities in nesting habitat prior to nesting season. © 2019 The Wildlife Society. 相似文献
19.
ABSTRACT More effective methods to control feral swine (Sus scrofa) damage are needed. We evaluated 8 oral delivery systems designed to deliver pharmaceuticals to feral swine on 2 properties in southern Texas, USA. We used modified PIGOUT® feral pig bait (Animal Control Technologies Australia P/L, Somerton, Victoria, Australia) throughout our trials to compare species-specific visitation and removal rates. Given our consistent finding of high nontarget removal of baits intended for feral swine, we question whether a swine-specific oral delivery system exists for this region. 相似文献