首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efforts to halt the decline of the northern bobwhite (Colinus virginianus; bobwhite) across its distribution have had limited success. Understanding bobwhite habitat requirements across the annual cycle and at varying scales is essential to aid efforts to conserve bobwhites. We monitored radio-tagged bobwhites from 2016 to 2018 on a 165-km2 portion of Fort Bragg Military Installation in the Sandhills physiographic region of North Carolina, USA, to determine factors influencing non-breeding bobwhite habitat selection at multiple scales. We used generalized linear models (GLM) and generalized linear mixed models to assess bobwhite habitat selection at the microsite scale (the immediate vicinity of an animal) and the macrosite scale (across the study area), respectively, by comparing used points to available random points. At the microsite scale, bobwhites strongly selected areas with greater woody understory cover. Also, bobwhite selection increased with greater forb and switchcane (Arundinaria tecta) cover, but this effect plateaued at 65% forb cover and 50% switchcane cover. At the macrosite scale, bobwhites generally selected areas with greater understory cover within a 200-m radius but avoided areas with >55% understory cover; these areas primarily were located in the core areas of drainages with extensive ericaceous vegetation. Bobwhites selected areas with 3–6 m2/ha hardwood basal area in uplands, potentially because of the availability of mast, but avoided uplands when pine (Pinus spp.) or hardwood basal area exceeded 20 m2/ha or 12 m2/ha, respectively, likely because high basal area is associated with increased shading and subsequent loss of understory cover. In addition, bobwhites selected uplands 1 growing season (≥2-month period falling entirely between 1 Apr and 1 Oct) post-fire regardless of burn season. Overall, managers seeking to improve habitat quality for bobwhites in longleaf pine (Pinus palustris) woodlands should employ management practices that maintain available woody understory across the landscape to provide cover during the non-breeding season. © 2020 The Wildlife Society.  相似文献   

2.
The northern bobwhite (Colinus virginianus; hereafter bobwhite) has experienced substantial population declines in recent decades in the United States, and especially in Maryland and Delaware. The United States Department of Agriculture's Conservation Reserve Program (CRP) could provide additional habitat for bobwhites, leading to an increase in bobwhite abundance. I investigated if bobwhite abundance was related to the percent cover of CRP land and landscape attributes in local landscapes on Maryland's Eastern Shore and Delaware. Observers conducted bobwhite point transect surveys at 113 locations during the breeding seasons of 2006–2007, and I calculated landscape metrics for 500-m radius landscapes centered on each point transect location. Most CRP land in the study landscapes was planted to herbaceous vegetation. Bobwhite abundance was strongly positively associated with percent cover of CRP land in the landscape but was not strongly related to percent cover of agriculture or forest or to landscape patch density. These results suggest that the CRP has created additional habitat for bobwhites in Maryland and Delaware and that landscapes with greater proportions of herbaceous CRP practices support more bobwhites. © 2012 The Wildlife Society.  相似文献   

3.
Deviations from typical environmental conditions can provide insight into how organisms may respond to future weather extremes predicted by climate modeling. During an episodic and multimonth heat wave event (i.e., ambient temperature up to 43.4°C), we studied the thermal ecology of a ground‐dwelling bird species in Western Oklahoma, USA. Specifically, we measured black bulb temperature (Tbb) and vegetation parameters at northern bobwhite (Colinus virginianus; hereafter bobwhite) adult and brood locations as well as at stratified random points in the study area. On the hottest days (i.e., ≥39°C), adults and broods obtained thermal refuge using tall woody cover that remained on average up to 16.51°C cooler than random sites on the landscape which reached >57°C. We also found that refuge sites used by bobwhites moderated thermal conditions by more than twofold compared to stratified random sites on the landscape but that Tbb commonly exceeded thermal stress thresholds for bobwhites (39°C) for several hours of the day within thermal refuges. The serendipitous high heat conditions captured in our study represent extreme heat for our study region as well as thermal stress for our study species, and subsequently allowed us to assess ground‐dwelling bird responses to temperatures that are predicted to become more common in the future. Our findings confirm the critical importance of tall woody cover for moderating temperatures and functioning as important islands of thermal refuge for ground‐dwelling birds, especially during extreme heat. However, the potential for extreme heat loads within thermal refuges that we observed (albeit much less extreme than the landscape) indicates that the functionality of tall woody cover to mitigate heat extremes may be increasingly limited in the future, thereby reinforcing predictions that climate change represents a clear and present danger for these species.  相似文献   

4.
Abstract: In a manipulative experiment, we tested effects of select elements of landscape structure and composition on winter survival of northern bobwhites (Colinus virginianus) at Ames Plantation, Tennessee, USA. We hypothesized that abundance of closed canopy forested habitats (52% of the landscape) on Ames diminished usable space for bobwhite and provided usable space for a suite of important predators, thereby contributing to low winter survival. To test this hypothesis we divided a 2,217-ha portion of the property into 4 approximately equal areas. We altered landscape structure and composition by converting approximately 33% of the timber to early successional herbaceous plant communities on 2 treatment sites, which reduced percentage of landscape and edge density of closed canopy forest and increased percentage of landscape in early successional herbaceous communities, and left 2 control sites in their former composition. During one pretreatment year (1998–1999) and 3 posttreatment years (1999–2000, 2000–2001, 2001–2002), we estimated winter (15 Oct-10 Apr) survival on treatment and control sites from a radiomarked sample of 920 bobwhites. We used Cox Proportional Hazard models to test for effects of treatment (forest conversion) and covariates describing landscape structure and composition (% closed canopy forest, % early successional herbaceous, wooded edge density) on winter survival at multiple spatial scales. Winter survival on the treatment sites pooled across the 4 winter seasons was 41% compared to 32% for control sites. Additionally, for each 1 m/ha increase in closed canopy woods edge density within winter covey ranges, risk of mortality increased 0.3%. Our results suggest composition at the landscape scale and landscape structure at the local scale influence winter survival of bobwhite. Management strategies that alter composition and structure and increase usable space may be effective in mitigating winter mortality thereby altering population trajectories. Typical bobwhite management plans focus on improving quality of herbaceous vegetation structure within existing herbaceous patches, however, population processes may work at larger spatial scales influencing design and implementation of conservation programs.  相似文献   

5.
Despite the acknowledged importance of prescribed fire in creating northern bobwhite (Colinus virginianus) breeding cover, little research has investigated bobwhite breeding season habitat selection relative to time since fire. In 2016 and 2017, we monitored radio-tagged bobwhite on a 17,000-ha portion of a military installation managed with frequent (every ~3 years) prescribed fires, applied during the growing and dormant seasons. We monitored bobwhite to determine which vegetation characteristics associated with prescribed burning were important to bobwhite breeding season habitat selection at the microsite (i.e., telemetry location compared to nearby random location) and the macrosite scale (i.e., the burn-unit containing the location compared to study area availability). During 2 breeding seasons, we collected 2,315 bobwhite locations and compared percent cover of vegetation, days since burn, basal area, and distance to key landscape features (e.g., stream, wildlife opening) at a subset of microsite locations (301 locations during 2016 and 890 locations during 2017) to paired random locations. At the microsite scale, bobwhite selected lower basal area of hardwoods, greater woody understory cover, greater other (not wiregrass [Aristida stricta]) grass cover, and greater forb cover than at random points. At the macrosite scale, bobwhite selected units with <4.6 m2/ha basal area (combined hardwoods and pines) in 2016 and units with <9.2 m2/ha basal area in 2017. At the macrosite scale, bobwhite selected for areas burned in the dormant season of the same year, avoided areas burned in the growing season of the same year, and used other times since last burn categories proportionate to their availability. The selection for a low basal area at both scales indicates prescribed fire effects would be limited by shading from dense overstory, and the shrubs, grasses, and forbs that provide essential cover for bobwhite during the breeding season will not develop. In lower productivity soil regions similar to our study area, we advise that thinning operations set target basal areas below 10 m2/ha to create and maintain breeding season habitat for northern bobwhite. © 2019 The Wildlife Society  相似文献   

6.
ABSTRACT Northern bobwhite (Colinus virginianus) is a species for which extensive knowledge exists regarding its ecology, life history, and habitat. Although the qualitative aspects of bobwhite habitat have been described and known for many decades, researchers have neglected to characterize bobwhite habitat quantitatively (i.e., habitat selection). Thus, biologists have been capable of identifying components that compose bobwhite habitat but have only been able to speculate on how much of each component was necessary. We documented selection-avoidance behavior of nesting bobwhites in Brooks County, Texas, USA, during May-August, 2004–2005. We measured 5 vegetation features (i.e., nesting-substrate ht and width, suitable nest clump density, herbaceous canopy coverage, and radius of complete visual obstruction) at nest sites (n = 105) and at random points (n = 204). We used continuous selection functions to assess habitat use and identify bounds of suitability. Selection domains for nesting-substrate height and radius of complete visual obstruction were 16.9–31.2 cm and 1.05-4.35 m, respectively. Across all measurements, bobwhites selected for nest sites with a nesting-substrate width ≥22.4 cm, suitable nest-clump density ≥730 nest clumps/ha, and herbaceous canopy coverage ≥36.7%. This knowledge will provide an important foundation for managers to evaluate current nesting conditions on semiarid rangelands and provide a basis for habitat management aimed at creating suitable nesting habitat for bobwhites.  相似文献   

7.
ABSTRACT Our study evaluated the effects of prescribed fire on northern bobwhites (Colinus virginianus) occupying native rangelands in Rolling Plains of Texas, USA, during 2002 and 2003. Prescribed fires were conducted during February of 1996, 1998, and 2000; pastures with no recent treatment history served as controls. We quantified bobwhite densities from line transects using distance sampling. We used a repeated-measures analysis of variance to test for treatment-year differences in bobwhite densities. We measured postfire herbaceous and woody vegetation attributes and evaluated vegetation relationships to bobwhite density using simple linear regression. We found significant between-year differences in fall bobwhite densities (F = 13.05, df = 3, P = 0.036) but no differences among treatments or controls. Fall bobwhite densities were inversely related to visual obstruction (r2 = 0.179, df = 15, P = 0.058) and positively associated with increasing heterogeneity of grass cover (r2 = 0.416, df = 15, P = 0.004). Our results suggest prescribed fire at large spatial scales may be a neutral practice for managing bobwhite habitat on semiarid rangelands.  相似文献   

8.
Woody vegetation can create distinct subcanopy and interspace microsites, which often result in resource islands in subcanopies compared to interspaces. This heterogeneity in soil resources contributes to herbaceous vegetation heterogeneity in plant communities. However, information detailing the impact of disturbance, such as fire, that removes the woody vegetation on microsites and herbaceous vegetation heterogeneity is limited. The purpose of this study was to determine the influence of burning on microsites and herbaceous vegetation in subcanopies and interspaces. Six study sites (blocks) were located at the Northern Great Basin Experimental Range in shrub (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh)-bunchgrass plant communities and one half of each block was burned to remove A. tridentata. Herbaceous vegetation and microsite characteristics were measured 2 years post-fire in intact and burned subcanopies and interspaces. Burning resulted in microsite and herbaceous vegetation differences between intact and burned subcanopies and intact and burned interspaces. However, burned subcanopies and burned interspaces appeared to be relatively similar. The similarity in microsite characteristics probably explains the lack of differences in herbaceous vegetation cover and biomass production between burned subcanopies and burned interspaces (P > 0.05). However, some microsite and herbaceous vegetation characteristics differed between burned subcanopies and burned interspaces. Our results suggest that disturbances that remove woody vegetation reduced microsite and herbaceous vegetation heterogeneity within plant communities, but do not completely remove the resource island effect. This suggests soil resource heterogeneity may influence post-fire community assembly and contribute to diversity maintenance. The Eastern Oregon Agricultural Research Center is jointly funded by the USDA-Agricultural Research Service and Oregon State Agricultural Experiment Station. Mention of a proprietary product does not constitute a guarantee or warranty of the product by USDA, Oregon State University, or the authors and does not imply its approval to the exclusion of other products.  相似文献   

9.
Abstract Analysis was performed of the richness and abundance of woody species, forbs, and annual grasses in the easily germinating soil seed bank (henceforth seed bank) in a mediterranean shrubland of central Chile. The effects of successional development after fire and by microsite type (underneath or outside shrubs) on the density of seeds in the soil, and the relationship of species abundance in the seed bank with its abundance in the above‐ground vegetation was examined. A total of 64 plant species were recorded in the seed bank, of which 44 were annual or biannual. Eight species were woody and another eight were perennial herbs. Four could not be identified to species level. The highest richness of established herbaceous species was recorded in late spring, with 31 species. The regeneration of the herbaceous vegetation was driven by the annual production of seeds and by a reserve of short‐lived propagules in the soil. Density of all germinating seeds was significantly higher during late spring and late summer. Density of grass seeds was greater during late spring, while that of all other species was greater during late summer. Annual grass seeds accumulated in higher proportion at exposed microsites rather than under woody canopy, and in young (< 5 years old) and intermediate‐age patches (10–20 years old) rather than in mature vegetation (30–50 years old). The abundance of established woody and herb species was uncorrelated with that of the seed bank.  相似文献   

10.
Herbaceous plants contribute much to plant diversity in Mediterranean-type ecosystems though mostly occupying relatively small patches within the dense woody vegetation. While studying species diversity in the herbaceous patches, we hypothesized that grazing, soil seed bank, and spatial properties of the patch affect plant diversity and composition at different spatial scales. The study site was in an LTER site located in the Mediterranean region in north Israel. We determined herbaceous species composition in: (1) randomly sampled quadrats in herbaceous patches in grazed and un-grazed plots; (2) soil seed bank samples taken from the same patches and germinated under optimal greenhouse conditions; (3) quadrats in the same patches sown with a homogenous mixture of local soil samples. Using GIS methods, we determined small-scale spatial characteristics of the herbaceous patches. Alpha and beta diversities were calculated at the patch and plot scales using Shannon's entropy H. Grazing increased alpha diversity of local untreated seed bank samples but decreased alpha diversity of the artificial homogenous soil seed bank mixture at both patch and plot scales. Positive relation between alpha diversity and patch area was detected only under grazing. Grazing increased beta diversity in all three treatments at the patch scale. Grazing decreased the similarity in species composition between above-ground vegetation and soil seed bank. The results indicate that moderate cattle-grazing affects species diversity in the herbaceous patches within the dense maquis. This effect is scale-dependent, and interacts with the effects of soil seed bank and patch spatial-properties: without grazing soil seed bank plays a more important role than patch spatial properties, but under grazing the size and the accessibility of the patch are more important in the determination of herbaceous species composition.  相似文献   

11.
Resource heterogeneity across the landscape prompts animals to make behavioral tradeoffs to survive and reproduce. Behavioral thermoregulation can buffer organisms from thermal extremes but may conflict with other essential activities such as predator avoidance or foraging, and necessitate tradeoffs among resource requirements. We evaluated patterns of habitat selection relative to thermal conditions, forage availability, and concealment cover for female eastern wild turkeys (Meleagris gallopavo silvestris) with broods to assess potential tradeoffs among resource requirements. We quantified air temperature (°C), vegetation characteristics (e.g., visual obstruction), and arthropod biomass (g/m2) at locations used by broods across 5 study sites in the southeastern United States during May–July 2019–2020. We used conditional logistic regression to estimate brooding female resource selection at the second (home range) and third (within home range) orders. Specifically, we identified differences in selection between brooding and non-brooding females (second order), and factors influencing selection of sites used by brooding females during the day (when loafing and foraging) and night (roosting; third order). Brooding females selected sites with cooler temperatures (β = −0.22; 95% CI = −0.338–−0.102) and greater ground cover vegetation (β = 0.02; 95% CI = 0.013–0.033) than non-brooding females. Additionally, biomass of large prey (Orthoptera) was positively related to ambient temperature, suggesting that use of thermal refuge by brooding females may limit availability of large prey. Brooding females appeared to balance the tradeoff between thermal refuge and forage availability by altering habitat selection patterns within home ranges. Brooding females selected for herbaceous areas that provided greater biomass of large arthropods during the day, and avoided areas dominated by woody vegetation during both the day and night. We did not observe brooding females using locations where woody cover exceeded 27% of understory vegetation. Thermal refuge is an important component of brood habitat, but within thermally suitable areas brooding females can select sites with greater availability of large prey to meet energetic demands of broods. Evaluation of multiple spatial scales is key when assessing tradeoffs among resource needs and determining the potential of behavioral thermoregulation to buffer an organism's thermal environment and allow persistence in a warming climate.  相似文献   

12.
A landscape-scale assessment of how bobwhite productivity varies in relation to weather does not exist for northern bobwhite (Colinus virginianus). We collected age and sex ratio and body mass data from hunter-harvested bobwhites in 16 counties of South Texas (n = 72,797 bobwhites) during 2001–2009 hunting seasons. We evaluated annual bobwhite production (juvenile:adult age ratios) as a function of cumulative April–August rainfall using National Oceanic and Atmospheric Administration (NOAA) weather station data from Falfurrias and Hebbronville, Texas. We observed minimal among-year change in percent males harvested (51.0–54.5% male) and mean mass (156–160 g) of bobwhites across South Texas. We found no relationship between percent male or body mass and weather. We documented a positive, linear relationship between cumulative April–August rainfall and bobwhite age ratios (r2 = 0.94); we also documented a negative, linear relationship between summer (Jun–Aug) mean maximum daily temperature and bobwhite age ratios (r2 = 0.38). Our results suggest that rainfall is a landscape-scale indicator of annual bobwhite production in South Texas and can thus be used to manage annual expectations of quail hunters prior to the hunting season. © The Wildlife Society, 2012  相似文献   

13.
Abstract: Northern bobwhite (Colinus virginianus) populations have experienced severe declines for several decades, and declines have been particularly precipitous in the southern United States. These declines are partially attributable to large-scale conversions of potential habitat to short-rotation pine (Pinus spp.) forests managed for wood fiber production and fire exclusion in pine-dominated landscapes. We used standard arthropod sampling techniques, human-imprinted bobwhite chicks, and vegetation response to evaluate effects of different understory vegetation management practices on brood habitat quality within a commercially managed pine forest in Louisiana, USA, during 2002–2005. Specifically, we evaluated effects of mowing, prescribed fire during the growing season, prescribed fire in combination with imazapyr application, and no vegetation management on arthropod abundance and diversity, vegetation response, and the probability of bobwhite chicks successfully capturing an arthropod. Bobwhite chicks were more successful at capturing arthropods, and arthropod abundance and diversity were greatest, in plant communities managed using prescribed fire and imazapyr. Forest stands managed using a combination of fire and imazapyr were managed primarily to benefit the federally endangered red-cockaded woodpecker (Picoides borealis; RCW). Our findings suggest that management directed toward improving forest condition for RCWs improves habitat quality for brooding bobwhites. However, bobwhite chicks in our study area were less successful at capturing arthropods than were chicks in other studies in the southeastern United States. Brood-rearing habitat in pine forests similar to those we studied may be of generally poor quality, and could be related to precipitous declines of bobwhites in the West Gulf Coastal Plain. Managers should recognize that creating high-quality brood habitat in forests similar to those we studied will require more intensive management of understory vegetation than we studied.  相似文献   

14.
Rainfall is a strong driver of quail populations on southwestern rangelands and can account for a large portion (~70–95%) of the variability in regional quail production and abundance. Landowners have attempted to moderate these boom-and-bust fluctuations via management; however, presently it is unknown whether management can increase or stabilize quail populations in semiarid environments or whether rainfall remains as influential at small spatial extents. Our objectives were to evaluate the efficacy of management at mitigating the effects of rainfall on northern bobwhite (Colinus virginianus) populations on semiarid rangelands and to quantify the influence of rainfall on bobwhite density at smaller spatial extents. We conducted a study to evaluate these objectives during 2014–2020 in the Rio Grande Plains (n = 11 sites; 1,100‒6,500 ha) and Rolling Plains (n = 4 sites; 1,900‒4,000 ha) of Texas, USA. We estimated bobwhite density during late autumn (Dec‒Jan) on all sites using helicopter surveys within a distance-sampling framework. We also obtained site-level seasonal rainfall (Apr‒Aug) and quantified management intensity via landowner surveys and a scoring rubric to categorize sites into 3 classes (low, medium, and high management intensity). Bobwhite populations during this study experienced a boom-bust cycle in both the Rio Grande Plains and Rolling Plains, with mean bobwhite density fluctuating considerably (0.57‒2.96 bobwhites/ha and 0.02‒2.88 bobwhites/ha, respectively). In the Rio Grande Plains, mean bobwhite density significantly increased from low to high management intensity in 2015 (1.12 ± 0.17 bobwhites/ha vs. 2.87 ± 0.39 bobwhites/ha, respectively), 2016 (1.06 ± 0.20 bobwhites/ha vs. 2.96 ± 0.36 bobwhites/ha, respectively), 2017 (0.73 ± 0.16 bobwhites/ha vs. 1.91 ± 0.32 bobwhites/ha, respectively), and 2019 (0.42 ± 0.14 bobwhites/ha vs. 1.01 ± 0.26 bobwhites/ha, respectively; P < 0.05). In addition, rainfall at the site level accounted for a low amount of the variation in bobwhite density (r2 = 0.09; P < 0.01). Similarly, in the Rolling Plains, mean bobwhite density significantly increased from low to high management intensity in 2015 (1.30 ± 0.27 bobwhites/ha vs. 2.20 ± 0.29 bobwhites/ha, respectively) and 2016 (1.26 ± 0.26 bobwhites/ha vs. 2.88 ± 0.34 bobwhites/ha, respectively; P < 0.05). Rainfall at the site level also accounted for a low amount of the variation in bobwhite density (r2 < 0.02; P = 0.82). Our findings suggest that management can increase bobwhite density beyond that of less-managed properties but does not completely eliminate inter-annual fluctuations in semiarid environments. In addition, rainfall appears to exert less of an influence on bobwhite density at a site level (e.g., 2,000 ha) than has been documented at a regional level (e.g., ≥8 million ha).  相似文献   

15.
The nebkhas of woody plants represent distinct habitats in arid and semiarid ecosystems. Nebkhas are mounds composed of wind-borne sediment within or around shrub canopies. We studied the effects of widely spaced nebkhas of Retama raetam shrub on their microenvironment and associated herbaceous vegetation in the Mediterranean coast of Sinai Peninsula. Our measurements included nebkha size (height and width) and shrub size (canopy height and diameter). We identified four distinct microsites at each nebkha: crest, mid-slope, edge, and internebkha space. We measured soil temperature and moisture, photosynthetically active radiation (PAR), and soil properties. The plant species grown at each microsite were identified and their densities were measured. Average soil temperature and PAR were highest at internebkha space and lowest at nebkha crest. The maximum diurnal temperature and PAR of internebkhas exceeded that of nebkhas. Soil moisture and nutrient concentrations showed a gradient of spatial heterogeneity and were highest at the nebkha edge. Regression analysis indicated that total herbaceous plant density was significantly related to nebkha size, and to shrub canopy diameter and area. Detrended correspondence analysis indicated that patterns of species composition were correlated with the spatial variability in soil moisture and nutrient content along the gradient of increasing distance from the nebkha crest. It is assumed that shrub canopy and its nebkha interact in governing ecosystem functioning in this environment.  相似文献   

16.
The impact of herbivores on herbaceous plant communities is usually attributed to direct consumption of plants. We hypothesized that goats affect herbaceous plants both directly (consumption by foraging) and indirectly, by changing environmental conditions through modification of woody plant structure. We assessed the effects of goats browsing on environmental conditions, landscape structure, and herbaceous plants to link the direct and indirect effects of goats on herbaceous communities. Our model system was the Mediterranean woodland in Mt. Carmel, Israel. This is a two-phase mosaic landscape, composed of herbaceous (open) and woody patches. We delineated 10 plots of 1000 m2, goats were introduced to five plots and five plots remained without goats. We monitored plant species richness and composition in two adjacent patch types (woody and open) in each plot. For each patch type, in all plots, we collected data on environmental conditions. We analyzed landscape structure using landscape metrics derived from a high-resolution vegetation map. We found that goats modified the structure of woody plants and hence the landscape mosaic. This alteration was associated with changes in environmental conditions, with more light penetration and higher temperatures. The impact of goats on the herbaceous plant community depended on patch type. In open patches, goats affected the herbaceous community mostly by direct consumption, whereas in woody patches they affected the herbaceous community mainly by modification of abiotic conditions. Our results stress the importance of considering landscape and patch structure in analyzing the effect of herbivory on plant communities.  相似文献   

17.
Northern bobwhites thrive in fine-grained landscapes with a diversity of early succession woodland, grassland, and agriculture-associated habitat types. Bobwhite conservation has proved challenging in the increasingly coarse-grained Midwestern landscape as simplified agricultural cropping systems are implemented at larger spatial scales. Regardless, managing agricultural landscapes on private lands is the primary opportunity to restore bobwhite populations in the Midwestern United States. Although bobwhite habitat requirements are well understood, habitat selection in contemporary Midwestern landscapes is not well understood, especially on private lands where populations are declining. We used compositional analysis to investigate second- (study area) and third- (home range) order habitat selection by radiomarked bobwhite coveys on 4 private land study areas in southwestern Ohio. Mean covey home range size was 26.1 ± 2.2 ha (n = 48). Although home ranges were established in areas with more grassland cover, bobwhites most strongly selected early succession woody habitat (e.g., fencerows and ditches) at all scales, and selection for grassland diminished between the study area and home range scales. Grassland selection varied among sites and was strongest on sites with more row crop area. Woodlots were avoided at the study area scale, but were selected within home ranges. Grassland cover, like that provided by contemporary conservation programs, is an essential component of bobwhite habitat in the Midwest, but our results suggest more emphasis should be placed on early succession woody cover. Woody cover associated with fencerows, ditches, and woodlots adjacent to food sources and breeding habitat will likely improve non-breeding season survival, which is an influential vital rate in northern populations. © 2012 The Wildlife Society.  相似文献   

18.
Abstract. In the Wet Chaco region of Argentina, increasing shrub encroachment in savannas over the last few decades has led to important changes in the structure and functioning of the landscape. Some sectors of this territory are characterized by the appearance of circular clusters of woody patches, dispersed throughout the grassland matrix. The increasing size of these patches leads to a gradual change from grassland to dense shrubland. We studied these circular woody patches in the eastern region of the Argentine province of Formosa and characterized the variation in terms of floristic composition, diversity and predominant seed dispersal mode in different size patches. We observed an increase in species richness, diversity and compositional heterogeneity among patches with increasing patch size. Seed dispersal by animals, especially birds, is an important factor in the expansion of these woody vegetation patches within the grassland matrix.  相似文献   

19.
Aim Anecdotal historical and photographic evidence suggests that woody vegetation is increasing dramatically in some northern Australian savanna habitats. Vegetation change in savannas has important implications for pastoral land‐use, conservation management, and landscape‐scale carbon storage, and informs theoretical debates about ecosystem function. This study seeks to determine the nature, extent and cause(s) of woody vegetation change in a seasonally flooded alluvial savanna habitat. Location The study area is located within the seasonally inundated alluvial zone of the tidal portion of the Victoria River, Northern Territory, Australia. The study area has been grazed by domestic stock since c. 1900, prior to which the area was inhabited and more likely regularly burnt by Aboriginal people for thousands of years. Methods Digital georeferenced aerial photographic coverages were used to examine and quantify woody vegetation change between 1948 and 1993. Transect surveys of woody and herbaceous vegetation were carried out to ground‐truth air‐photo results and determine the nature and causes of observed vegetation changes. Results There has been a dramatic increase in woody vegetation cover throughout the study area. Vegetation change patterns are roughly uniform across the full range of edaphic habitat variation and are unrelated to the depositional age of fluvial sediments. Two woody species, Eucalyptus microtheca and Excoecaria parvifolia, are predominantly responsible for observed increases. Demographic analyses reveal that woody invasions have been episodic and indicate that in most locations peak woody species establishment occurred in the mid‐1970s. Grasses are almost absent in a majority of habitats within the study area. Instead, large areas are covered by scalded soil, dense invasive weed populations, and unpalatable forbs and sedges. What grasses do occur are predominantly of very low value for grazing. The condition of the herbaceous layer renders most of the study area almost completely non‐flammable; what fires do burn are small and of low intensity. Main conclusions Multiple working hypotheses explaining observed patterns of woody vegetation increase were considered and rejected in turn. The only hypothesis consistent with the evidence is as follows: (1) observed changes are a direct consequence of extreme overgrazing by cattle, most likely when stocking rates peaked in the mid‐1970s; (2) prolonged heavy grazing effected the complete transformation of much of the herbaceous vegetation to a new state that is not flammable; and (3) in the absence of regular fire mortality, woody vegetation increased rapidly. The relatively treeless system that existed in 1948 was apparently stable and resilient to moderate grazing levels, and perhaps also to episodic heavy grazing events. However, grazing intensity in excess of a sustainable threshold has forced a transition that is irreversible in the foreseeable future. Stable‐state transitions such as this one inform debates at the heart of ecological theory, such as the nature of stability, resilience, equilibrium and carrying capacity in dynamic savanna ecosystems.  相似文献   

20.
Aims Studies of species distribution patterns traditionally have been conducted at a single scale, often overlooking species–environment relationships operating at finer or coarser scales. Testing diversity-related hypotheses at multiple scales requires a robust sampling design that is nested across scales. Our chief motivation in this study was to quantify the contributions of different predictors of herbaceous species richness at a range of local scales.Methods Here, we develop a hierarchically nested sampling design that is balanced across scales, in order to study the role of several environmental factors in determining herbaceous species distribution at various scales simultaneously. We focus on the impact of woody vegetation, a relatively unexplored factor, as well as that of soil and topography. Light detection and ranging (LiDAR) imaging enabled precise characterization of the 3D structure of the woody vegetation, while acoustic spectrophotometry allowed a particularly high-resolution mapping of soil CaCO 3 and organic matter contents.Important findings We found that woody vegetation was the dominant explanatory variable at all three scales (10, 100 and 1000 m 2), accounting for more than 60% of the total explained variance. In addition, we found that the species richness–environment relationship was scale dependent. Many studies that explicitly address the issue of scale do so by comparing local and regional scales. Our results show that efforts to conserve plant communities should take into account scale dependence when analyzing species richness–environment relationships, even at much finer resolutions than local vs. regional. In addition, conserving heterogeneity in woody vegetation structure at multiple scales is a key to conserving diverse herbaceous communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号