首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2002年、2003年和2004年的12月至3月,在小兴安岭黑河胜山林场开展了驼鹿生境选择的研究。研究中选择了9类与驼鹿生境选择相关的生态因子:植被型、离公路距离、离采伐点距离、平均雪深、隐蔽程度、坡向、坡位、坡度、海拔,运用SPSS软件进行交叉汇总定量分析。结果表明,胜山驼鹿冬季以落叶阔叶林、灌丛为主要生境,影响驼鹿分布的主要生态因子为隐蔽程度、坡位,其次为雪深、坡向、离采伐点距离、离公路距离,坡度、海拔对驼鹿分布的影响不明显。  相似文献   

2.
Continuing research on cause-specific mortality and annual survival of moose (Alces alces) calves in northeastern Minnesota, USA, is important to understanding the long-term trajectory of the population. In 2013 and 2014, we observed global positioning system (GPS)-collared, female moose exhibit a specific behavior (i.e., mortality movement) associated with the death of their GPS-collared neonate. The females made a rapid, long-distance movement (flee), followed by a return to the calf mortality site. We used characteristics of this movement in 2013–2014 (n = 46) to develop models for assessing calf survival, and then evaluated these models using female movement rates (n = 49) in 2015−2016. Using this behavior as an indicator of calf mortality in 2016, we conducted field investigations, leading to evidence of 15 mortalities at a mean age of 30.6 ± 15.5 (SE) days (range = 3–243 days). We launched 21 investigations in response to a mortality movement and they resulted in confirmation of 11 of the 15 calf mortalities. Specific causes of mortality included 9 wolf (Canis lupus)-kills, 3 black bear (Ursus americanus)-kills, 1 unknown predator-kill, and 2 deaths following vehicle collisions. The mean distance females fled after a mortality was 1,873 ± 412 m (range = 126–5,805 m, n = 14). Females that made return visits returned a mean 2.8 ± 0.5 times (range = 1–5, n = 8) to within a mean 106 ± 22 m (range = 34–230 m, n = 8) of the mortality site. Calf survival to 30 days of age was 67 ± 8% (95% CI = 53–84%, n = 36) but declined to 53 ± 8% (95% CI = 39–72%, n = 36) by 3 months of age. We developed 2 population-level movement models to improve the efficacy of using the mortality movement to identify and locate calf mortalities in real time via field investigations. The first approach, a temporal-based model, used a 3-day average movement velocity threshold (118 m/hr) for all females to indicate calf mortality and accurately predicted survival status in 51% (n = 105) of the cases. The second approach, an age-specific model using different thresholds (28–135 m/hr) for females relative to calf age, was 80% (n = 231) accurate. Using movement behavior of females to assess calf mortality yielded important insights into mechanisms influencing the population decline that will inform future management decisions. © 2019 The Wildlife Society  相似文献   

3.
ABSTRACT The earth is in the midst of a pronounced warming trend and temperatures in Minnesota, USA, as elsewhere, are projected to increase. Northern Minnesota represents the southern edge to the circumpolar distribution of moose (Alces alces), a species intolerant of heat. Moose increase their metabolic rate to regulate their core body temperature as temperatures rise. We hypothesized that moose survival rates would be a function of the frequency and magnitude that ambient temperatures exceeded the upper critical temperature of moose. We compared annual and seasonal moose survival in northeastern Minnesota between 2002 and 2008 with a temperature metric. We found that models based on January temperatures above the critical threshold were inversely correlated with subsequent survival and explained >78% of variability in spring, fall, and annual survival. Models based on late-spring temperatures also explained a high proportion of survival during the subsequent fall. A model based on warm-season temperatures was important in explaining survival during the subsequent winter. Our analyses suggest that temperatures may have a cumulative influence on survival. We expect that continuation or acceleration of current climate trends will result in decreased survival, a decrease in moose density, and ultimately, a retreat of moose northward from their current distribution.  相似文献   

4.
ABSTRACT North temperate species on the southern edge of their distribution are especially at risk to climate-induced changes. One such species is the moose (Alces alces), whose continental United States distribution is restricted to northern states or northern portions of the Rocky Mountain cordillera. We used a series of matrix models to evaluate the demographic implications of estimated survival and reproduction schedules for a moose population in northeastern Minnesota, USA, between 2002 and 2008. We used data from a telemetry study to calculate adult survival rates and estimated calf survival and fertility of adult females by using results of helicopter surveys. Estimated age- and year-specific survival rates showed a sinusoidal temporal pattern during our study and were lower for younger and old-aged animals. Estimates of annual adult survival (when assumed to be constant for ages >1.7 yr old) ranged from 0.74 to 0.85. Annual calf survival averaged 0.40, and the annual ratio of calves born to radiocollared females averaged 0.78. Point estimates for the finite rate of increase (λ) from yearly matrices ranged from 0.67 to 0.98 during our 6-year study, indicative of a long-term declining population. Assuming each matrix to be equally likely to occur in the future, we estimated a long-term stochastic growth rate of 0.85. Even if heat stress is not responsible for current levels of survival, continuation of this growth rate will ultimately result in a northward shift of the southern edge of moose distribution. Population growth rate, and its uncertainty, was most sensitive to changes in estimated adult survival rates. The relative importance of adult survival to population viability has important implications for harvest of large herbivores and the collection of information on wildlife fertility.  相似文献   

5.
Moose, Alces alces, occur naturally throughout most of Canada but successful introductions of known numbers of animals have been made to the islands of Newfoundland and Cape Breton. Five microsatellite loci were used to investigate the population genetic structure and any change in genetic variability due to founder events of moose in Canada. Comparisons of allele frequencies for moose from 11 regions of the country suggested that there are at least seven genetically distinct populations (P < 0.05) in North America, namely Alberta, eastern Ontario, New Brunswick, Cape Breton, Labrador, western Newfoundland, and the Avalon Peninsula of Newfoundland. The average population heterozygosity was approximately 33% (range from 22 to 41%). UPGMA analysis of Nei's genetic distances produced phenograms similar to what would be expected when geographical location and population history are considered. The loss of heterozygosity due to a single founder event (n = 3; two introductions and a natural colonization) ranged from 14 to 30%, and the cumulative loss of heterozygosity due to two successive founder events (an introduction followed by a natural colonization) was 46%. In these examples loss of genetic variability has not been associated with any known phenotypic deviances, suggesting that populations may be established from a small number of founders. However, the viability of these founded populations over evolutionary timescales cannot be determined and is highly dependent upon chance.  相似文献   

6.
Management and research of moose (Alces alces) in Alaska, USA, often require chemical immobilization; however, moose may be prone to capture-induced hyperthermia while immobilized. We chemically immobilized moose with carfentanil citrate and xylazine hydrochloride to measure rump fat depth, collect blood and fecal samples, and to deploy modified vaginal implant transmitters and global positioning system (GPS)-collars for recording body temperature and movement during and after the chemical immobilization. We predicted wild moose pursued and captured from a helicopter would have elevated body temperature at time of capture, whereas body temperature would remain stable in hand-raised captive moose not pursued and only hand-injected for immobilization. Additionally, we expected post-capture body temperature would be a function of activity, time immobilized, and ambient temperature. As predicted, body temperature of wild moose was elevated 1 hour after capture (38.9°C, 95% CI = 38.7–39.1°C) but returned to baseline levels within 3 hours (38.0°C, 95% CI = 37.9–38.1°C); however, body temperatures then rose above baseline levels and remained elevated 12–48 hours post-capture when movement rates were also elevated. Body temperatures in captive moose were not elevated 1-hour post-immobilization (37.9°C, 95% CI = 37.8–38.0°C). Body temperatures of wild moose were positively related to cortisol levels at time of capture. Two moose that died after immobilization had initial body temperatures similar to other immobilized moose; however, their body temperature began to rise at 17 hours and 40 hours post-immobilization. Our study provides evidence that chemical immobilization affects body temperature and movement of wild moose up to 48 hours after capture, possibly as a result of renarcotization from carfentanil citrate. With advancements in technology, we recommend fine-scale GPS data (<1-hr fix rates) and continuous body temperature be evaluated to detect evidence of renarcotization during and after opioid-based captures of northern ungulates. © 2020 The Wildlife Society.  相似文献   

7.
ABSTRACT Given recent actions to increase sustained yield of moose (Alces alces) in Alaska, USA, we examined factors affecting yield and moose demographics and discussed related management. Prior studies concluded that yield and density of moose remain low in much of Interior Alaska and Yukon, Canada, despite high moose reproductive rates, because of predation from lightly harvested grizzly (Ursus arctos) and black bear (U. americanus) and wolf (Canis lupus) populations. Our study area, Game Management Unit (GMU) 20A, was also in Interior Alaska, but we describe elevated yield and density of moose. Prior to our study, a wolf control program (1976–1982) helped reverse a decline in the moose population. Subsequent to 1975, moose numbers continued a 28-year, 7-fold increase through the initial 8 years of our study (λB1 = 1.05 during 1996–2004, peak density = 1,299 moose/1,000 km2). During these initial 8 hunting seasons, reported harvest was composed primarily of males ( = 88%). Total harvest averaged 5% of the prehunt population and 57 moose/1,000 km2, the highest sustained harvest-density recorded in Interior Alaska for similar-sized areas. In contrast, sustained total harvests of <10 moose/1,000 km2 existed among low-density, predator-limited moose populations in Interior Alaska (≤417 moose/1,000 km2). During the final 3 years of our study (2004–2006), moose numbers declined (λB2 = 0.96) as intended using liberal harvests of female and male moose ( = 47%) that averaged 7% of the prehunt population and 97 moose/1,000 km2. We intentionally reduced high densities in the central half of GMU 20A (up to 1,741 moose/1,000 km2 in Nov) because moose were reproducing at the lowest rate measured among wild, noninsular North American populations. Calf survival was uniquely high in GMU 20A compared with 7 similar radiocollaring studies in Alaska and Yukon. Low predation was the proximate factor that allowed moose in GMU 20A to increase in density and sustain elevated yields. Bears killed only 9% of the modeled postcalving moose population annually in GMU 20A during 1996–2004, in contrast to 18–27% in 3 studies of low-density moose populations. Thus, outside GMU 20A, higher bear predation rates can create challenges for those desiring rapid increases in sustained yield of moose. Wolves killed 8–15% of the 4 postcalving moose populations annually (10% in GMU 20A), hunters killed 2–6%, and other factors killed 1–6%. Annually during the increase phase in GMU 20A, calf moose constituted 75% of the predator-killed moose and predators killed 4 times more moose than hunters killed. Wolf predation on calves remained largely additive at the high moose densities studied in GMU 20A. Sustainable harvest-densities of moose can be increased several-fold in most areas of Interior Alaska where moose density and moose: predator ratios are lower than in GMU 20A and nutritional status is higher. Steps include 1) reducing predation sufficient to allow the moose population to grow, and 2) initiating harvest of female moose to halt population growth and maximize harvest after density-dependent moose nutritional indices reach or approach the thresholds we previously published.  相似文献   

8.
Although some populations remain stable, moose (Alces alces) density and distribution have been declining in many areas along the southern edge of their North American distribution. During 2006–2009, we deployed 99 vaginal implant transmitters (VITs) in 86 adult female moose in central Ontario, Canada to assist in locating and radiocollaring neonatal moose calves. We monitored radiocollared calves to estimate calf survival and assess the relative importance of specific causes of death. Calves in the western portion of our study area (WMU49) were exposed to a 6-day general hunting season, whereas calves in the eastern portion of our study area (Algonquin Provincial Park [APP]) were not exposed to hunting. Annual survival for 87 collared calves was greater in the protected area than the harvested area (72.4 ± 6.8% and 55.8 ± 8.3%, respectively) and averaged 63.7 ± 7.1% overall. Predation by wolves (Canis sp.) and American black bears (Ursus americanus) was the dominant cause of death but occurred predominately in APP, whereas other natural mortality agents were 4× more common in WMU49. Only 16% of the collared calves in WMU49 were harvested each year despite a high proportion (approx. 50%) of accessible, public land. Most natural mortality occurred prior to the autumn hunting season such that reductions in natural mortality had little potential to compensate for calf harvest. Overall, calf survival in our study area was moderate to high and our findings suggest predator control or further restrictions of calf hunting in this area is not justified. © The Wildlife Society, 2013  相似文献   

9.
Abstract: We analyzed moose (Alces alces)-vehicle collisions (MVCs) in western Maine, USA, from 1992 to 2005 (n = 8,156) using Geographic Information Systems to identify patterns of temporal and spatial distribution and develop predictive models based on road and landscape characteristics. We used chi-square and correlation analyses to assess temporal characteristics of MVCs, K-function and kernel analyses to identify spatial clusters of MVCs, and logistic regression to relate covariates for traffic, land-cover, land-form, and relative moose abundance to probability of MVC. We evaluated candidate models using Akaike's Information Criterion, area under the receiver operating characteristic curve (AUC), and the percentage of correctly classified observations. Most (81.6%) MVCs occurred from May to October, with peak monthly frequencies in June (18.6%). Moose-vehicle collisions were clustered spatially on roads at local (0–4 km) and regional scales (22–41 km and 45–54 km), but not at intermediate scales. Traffic-related covariates predicting MVCs included traffic volume and speed limit. For each additional 500 vehicles/day, odds of a location being an MVC increased by 57%. For each 8-km/hr increase in speed limit, odds of an MVC increased by 35%. Landscape composition covariates best predicted MVCs within a 2.5-km radius of the collision site. Mean percent cover within 2.5 km of MVCs was comprised of 36% more cutover forest, 10% more coniferous forest, 5% less deciduous-mixed forest, and 10% less nonwoody wetland than for random points. For every 5% increase in percent cutover and coniferous forest within 2.5 km of the road, predicted odds of MVC increased by 36% and 19%, respectively. Landscape configuration covariates best predicted MVCs within the 5.0-km radius. Moose-vehicle collisions were associated with areas of less interspersion of cover types; for each 5% increase in an index of interspersion-juxtaposition, predicted odds of MVC decreased by 11%. Our final model attained high predictive power (AUC = 0.835) and validation accuracy (75.0%). The model also proved robust to physiographic variation, exhibiting high predictive power (AUC = 0.828) and validation accuracy (68.8%). Managers seeking to prioritize resources for reducing MVCs or predicting future areas of high MVC probability should assess land-cover composition and configuration surrounding MVC hotspots at geographic extents out to 2.5–5 km and use this information to plan expensive roadside management practices such as fencing. The importance of traffic and landscape covariates in our modeling suggests that effective management to reduce MVCs will require a complex combination of driving speed reductions and modifications to forest management along roads.  相似文献   

10.
Abstract: Because they do not require sacrificing animals, body condition scores (BCS), thickness of rump fat (MAXFAT), and other similar predictors of body fat have advanced estimating nutritional condition of ungulates and their use has proliferated in North America in the last decade. However, initial testing of these predictors was too limited to assess their reliability among diverse habitats, ecotypes, subspecies, and populations across the continent. With data collected from mule deer (Odocoileus hemionus), elk (Cervus elaphus), and moose (Alces alces) during initial model development and data collected subsequently from free-ranging mule deer and elk herds across much of the western United States, we evaluated reliability across a broader range of conditions than were initially available. First, to more rigorously test reliability of the MAXFAT index, we evaluated its robustness across the 3 species, using an allometric scaling function to adjust for differences in animal size. We then evaluated MAXFAT, rump body condition score (rBCS), rLIVINDEX (an arithmetic combination of MAXFAT and rBCS), and our new allometrically scaled rump-fat thickness index using data from 815 free-ranging female Roosevelt and Rocky Mountain elk (C. e. roosevelti and C. e. nelsoni) from 19 populations encompassing 4 geographic regions and 250 free-ranging female mule deer from 7 populations and 2 regions. We tested for effects of subspecies, geographic region, and captive versus free-ranging existence. Rump-fat thickness, when scaled allometrically with body mass, was related to ingesta-free body fat over a 38–522-kg range of body mass (r2 = 0.87; P < 0.001), indicating the technique is remarkably robust among at least the 3 cervid species of our analysis. However, we found an underscoring bias with the rBCS for elk that had >12% body fat. This bias translated into a difference between subspecies, because Rocky Mountain elk tended to be fatter than Roosevelt elk in our sample. Effects of observer error with the rBCS also existed for mule deer with moderate to high levels of body fat, and deer body size significantly affected accuracy of the MAXFAT predictor. Our analyses confirm robustness of the rump-fat index for these 3 species but highlight the potential for bias due to differences in body size and to observer error with BCS scoring. We present alternative LIVINDEX equations where potential bias from rBCS and bias due to body size are eliminated or reduced. These modifications improve the accuracy of estimating body fat for projects intended to monitor nutritional status of herds or to evaluate nutrition's influence on population demographics.  相似文献   

11.
Across much of North America, populations of moose (Alces alces) are declining because of disease, predation, climate change, and anthropogenic-driven habitat loss. Contrary to this trend, populations of moose in Colorado, USA, have continued to grow. Studying successful (i.e., persistent or growing) populations of moose can facilitate continued conservation by identifying habitat features critical to persistence of moose. We hypothesized that moose using habitat with higher quality willow (Salix spp.) would have a higher probability of having a calf-at-heel (i.e., calving success). We evaluated moose calving success using repeated ground observations of collared individuals with calves in an occupancy model framework to account for detection probability. We then evaluated the impact of willow habitat quality and nutrition on moose calving success by studying 2 spatially segregated populations of moose in Colorado. Last, we evaluated correlations between willow characteristics (browse intensity, height, cover, leaf length, and species) and willow nutrition (dry matter digestibility [DMD]) to assess the utility of using those characteristics to assess willow nutrition. We found willow height and cover had a high probability of being positively associated with higher individual-level calving success. Willow DMD, browse intensity, and leaf length were not predictive of individual moose calving success; however, the site with higher mean DMD consistently had higher mean estimates of calving success for the same year. Our results suggest surveying DMD is likely not a useful metric for assessing differences in calving success of individual moose but may be of use at population levels. Further, the assessment of willow morphology and density may be used to identify areas that support higher levels of moose calving success.  相似文献   

12.
Ungulate reproductive success (calf production and survival) influences population performance. The moose (Alces alces) population in northeastern Minnesota, USA, has declined 65% from 2006 to 2018 but has begun to stabilize. Because causes of this decline were largely unknown, we investigated production, survival, and cause-specific mortality of calves of the global positioning system (GPS)-collared females in this population. In 2013 and 2014, we GPS-collared 74 neonates and monitored them for survival. In 2015 and 2016, we monitored 50 and 35 calving females for signs of neonatal mortality using changes in adult female velocities and assessed seasonal calf survival by aerial surveys. In 2013 and 2014 (pooled), survival to 9 months was 0.34 (95% CI = 0.23–0.52) for collared calves, and in 2015 and 2016 (pooled) survival was 0.35 (95% CI = 0.26–0.48) for uncollared calves. Mortality in all 4 years was high during the first 50 days of life. In 2013 and 2014 (pooled), calving sites were relatively safe for collared neonates; predator-kills occurred a median 17.0 days after departure and a median 1,142 m from calving sites. Predation was the leading cause of death of collared calves (84% of mortalities), with wolves (Canis lupus) accounting for 77% of these. Other forms of mortality for collared and uncollared calves included drowning, infection, vehicle collision, and natural abandonment. We documented higher wolf predation than other recent studies with similar predator communities. Identifying specific causes of calf mortality and understanding their relations to various landscape characteristics and other extrinsic factors should yield insight into mechanisms contributing to the declining moose population in northeastern Minnesota and serve as a basis for ecologically sound management responses. © 2019 The Wildlife Society.  相似文献   

13.
14.
15.
ABSTRACT The practice of feeding cervids in winter, either as a supplement to enhance nutritional status or to divert animals away from roads, railways, or vulnerable habitats, is rising noticeably. Moose (Alces alces) densities in Scandinavia are currently at historically high levels, resulting in amplified damage to economically important young Scots pine (Pinus sylvestris) forest stands. Nevertheless, there is limited information as to how diversionary feeding affects herbivore space use and habitat selection. We followed 32 female moose marked with Global Positioning System collars to evaluate 1) if feeding stations serve as attraction points to the extent that habitat-selection patterns resemble those of central-place foragers (i.e., high usage and more uniform selection close to the attraction point), and 2) if moose using feeding sites select young pine stands less than those not using feeding sites. Moose that used diversionary forage concentrated their space use around feeding stations and selected habitats as predicted for a central-place forager with a decreasing probability of using areas away from feeding sites and a low degree of habitat selectivity close to feeding sites. However, moose that used feeding sites continued to select young pine stands to the same extent as moose that did not use feeding sites. Feeding sites were, therefore, not successful in diverting moose away from valuable natural browse, so we recommend wildlife managers establish feeding sites in sacrifice areas where moose browsing is permissible and, if possible, >1 km from young pine plantations.  相似文献   

16.
Climate change may modify species distribution to higher latitudes, resulting in potential changes of parasite diversity and transmission dynamics in areas where animals might not be locally adapted to these new parasite species. In addition, climate change may increase the frequency and severity of infestations of parasites that are already present in a region, by promoting the development and survival of infectious stages. Over the last decades, the number of moose (Alces americanus) infested by winter ticks (Dermacentor albipictus) has increased in eastern Canada, possibly because milder climatic conditions are increasing winter tick survival. Our main objective was to determine which meteorological variables are more likely to influence winter tick load on moose. We compiled several weather variables that may limit winter tick survival and explored which weather variables, or their interactions, influenced the winter tick load of 4,100 hunted moose from 2013 to 2019 in Québec, Canada along a latitudinal gradient. Winter tick load in fall decreased with the maximum number of consecutive days in spring with average daily temperatures below −15°C and with the number of consecutive days in summer with a relative humidity <80% when snowmelt in spring was earlier. These results suggest that cold temperatures and prolonged periods of low humidity, amplified by early snowmelt, limit the survival of adult female ticks and eggs, thus limiting their subsequent load on moose during the following fall. With climate change, precipitation increases and warm temperatures occur earlier in spring and are more frequent in summer. Our results suggest that climate change may have a positive long-term influence on winter tick abundance in the environment and thereby increase winter tick load on moose, which could lead to a significant decrease in moose body condition and survival.  相似文献   

17.
Wildlife models focused solely on a single strong influence (e.g., habitat components, wildlife harvest) are limited in their ability to detect key mechanisms influencing population change. Instead, we propose integrated modeling in the context of cumulative effects assessment using multispecies population dynamics models linked to landscape-climate simulation at large spatial and temporal scales. We developed an integrated landscape and population simulation model using ALCES Online as the model-building platform, and the model accounted for key ecological components and relationships among moose (Alces alces), grey wolves (Canis lupus nubilus), and woodland caribou (Rangifer tarandus caribou) in northern Ontario, Canada. We simulated multiple scenarios over 5 decades (beginning 2020) to explore sensitivity to climate change and land use and assessed effects at multiple scales. The magnitude of effect and the relative importance of key factors (climate change, roads, and habitat) differed depending on the scale of assessment. Across the full extent of the study area (654,311km2 [ecozonal scale]), the caribou population declined by 26% largely because of climate change and associated predator-prey response, which led to caribou range recession in the southern part of the study area. At the caribou range scale (108,378 km2), which focused on 2 herds in the northern part of the study area, climate change led to a 10% decline in the population and development led to an additional 7% decline. At the project scale (8,331 km2), which was focused more narrowly on the landscape surrounding 4 proposed mines, the caribou population declined by 29% largely in response to simulated development. Given that observed caribou population dynamics were sensitive to the cumulative effects of climate change, land use, interspecific interactions, and scale, insights from the analysis might not emerge under a less complex model. Our integrated modeling framework provides valuable support for broader regional assessments, including estimation of risk to caribou and Indigenous food security, and for developing and evaluating potential caribou recovery strategies. © 2021 The Authors. The Journal of Wildlife Management published by Wiley Periodicals LLC on behalf of The Wildlife Society.  相似文献   

18.
Monitoring large herbivores across their core range has been readily accomplished using aerial surveys and traditional distance sampling. But for peripheral populations, where individuals may occur in patchy, low-density populations, precise estimation of population size and trend remains logistically and statistically challenging. For moose (Alces alces) along their southern range margin in northern New York, USA, we sought robust estimates of moose distribution, abundance, and population trend (2016–2019) using a combination of aerial surveys (line transect distance-sampling), repeated surveys in areas where moose were known to occur to boost the number of detections, and density surface modeling (DSM) with spatial covariates. We achieved a precise estimate of density (95% CI = 0.00–0.29 moose/km2) for this small population (656 moose, 95% CI = 501–859), which was patchily distributed across a large and heavily forested region (the 24,280-km2 Adirondack Park). Local moose abundance was positively related to active timber management, elevation, and snow cover, and negatively related to large bodies of water. As expected, moose abundance in this peripheral population was low relative to its core range in other northern forest states. Yet, in areas where abundance was greatest, moose densities in New York approached those where epizootics of winter tick (Dermacentor albipictus) have been reported, underscoring the need for effective and efficient monitoring. By incorporating autocorrelation in observations and landscape covariates, DSM provided spatially explicit estimates of moose density with greater precision and no additional field effort over traditional distance sampling. Combined with repeated surveys of areas with known moose occurrence to achieve viable sample sizes, DSM is a useful tool for effectively monitoring low density and patchy populations.  相似文献   

19.
ABSTRACT The moose (Alces alces) is the most intensely managed game species in Sweden. Despite the biological and socioeconomical importance of moose, little is known of its population genetic structure. We analyzed 132 individuals from 4 geographically separate regions in Sweden for genetic variability at 6 microsatellite loci. We found evidence of strong substructuring and restricted levels of gene flow in this potentially mobile mammal. FST values were around 10%, and assignment tests indicated 3 genetically distinct populations over the study area. Spatial autocorrelation analysis provided a genetic patch size of approximately 420 km, implying that moose less than this distance apart are genetically more similar than 2 random individuals. Allele and genotype frequency distributions suggested a recent bottleneck in southern Sweden. Results indicate that moose may be more genetically divergent than currently anticipated, and therefore, the strong hunting pressure that is maintained over all of Sweden may have considerable local effects on genetic diversity. Sustainable moose hunting requires identification of spatial genetic structure to ensure that separate, genetically distinct subpopulations are not overharvested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号