首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Minimally invasive fetal interventions require accurate imaging from inside the uterine cavity. Twin‐to‐twin transfusion syndrome (TTTS), a condition considered in this study, occurs from abnormal vascular anastomoses in the placenta that allow blood to flow unevenly between the fetuses. Currently, TTTS is treated fetoscopically by identifying the anastomosing vessels, and then performing laser photocoagulation. However, white light fetoscopy provides limited visibility of placental vasculature, which can lead to missed anastomoses or incomplete photocoagulation. Photoacoustic (PA) imaging is an alternative imaging method that provides contrast for hemoglobin, and in this study, two PA systems were used to visualize chorionic (fetal) superficial and subsurface vasculature in human placentas. The first system comprised an optical parametric oscillator for PA excitation and a 2D Fabry‐Pérot cavity ultrasound sensor; the second, light emitting diode arrays and a 1D clinical linear‐array ultrasound imaging probe. Volumetric photoacoustic images were acquired from ex vivo normal term and TTTS‐treated placentas. It was shown that superficial and subsurface branching blood vessels could be visualized to depths of approximately 7 mm, and that ablated tissue yielded negative image contrast. This study demonstrated the strong potential of PA imaging to guide minimally invasive fetal therapies.   相似文献   

2.
Optical-resolution photoacoustic microscopy suffers from limited depth of field due to the strongly focused laser beam. Here, a novel volumetric information fusion is proposed to achieve large volumetric and high-resolution imaging. First, three-dimensional stationary wavelet transform was performed on the multi-focus data to obtain eight wavelet coefficients. Differential evolution based on joint weighted evaluation was then employed to optimize the block size of division for each wavelet coefficient. The proposed fusion rule using standard deviation for focus detection was used to fuse the corresponding sub-coefficients. Finally, photoacoustic imaging with large depth of field can be achieved by the inverse stationary wavelet transform. Performance test shows that the depth of field of photoacoustic imaging can be doubled without sacrificing lateral resolution. The proposed volumetric information fusion can further promote the capability of volumetric imaging of optical-resolution photoacoustic microscopy and will be helpful in the acquisition of physiological and pathological process.  相似文献   

3.
Oblique scanning laser ophthalmoscopy (oSLO) is a novel imaging modality to provide volumetric retinal imaging without depth sectioning over a large field of view (FOV). It has been successfully demonstrated in vivo in rodent eyes for volumetric fluorescein angiography (vFA). However, engineering oSLO for human retinal imaging is challenging because of the low numerical aperture (NA) of human ocular optics. To overcome this challenge, we implement optical designs to (a) increase the angle of the intermediate image under Scheimpflug condition, and (b) expand the magnification in the depth dimension with cylindrical lens to enable sufficient sampling density. In addition, we adopt a scanning‐and‐descaning strategy, resulting in a compact oSLO system. We experimentally show that the current setup can achieve a FOV of ~3 × 6 × 0.8 mm3, and the transverse and axial resolutions of 7 and 41 μm, respectively. This feasibility study serves an important step for future in vivo human retinal imaging.  相似文献   

4.
Deep vein thrombosis (DVT) is a disorder when a blood clot (thrombus) is formed in one of the deep veins. These clots detach from the original sites and circulate in the blood stream at high velocities. Diagnosing these blood clots at an early stage is necessary to decide the treatment strategy. For label-free, in vivo, and real-time detection, high framerate photoacoustic imaging can be used. In this work, a dual modal clinical ultrasound and photoacoustic (PA) system is used for the high framerate PA imaging of circulating blood clots in blood at linear velocities up to 107 cm/sec. Blood clot had 1.4 times higher signal-to-noise ratio (SNR) in the static mode and 1.3 times higher SNR compared to blood PA signal in the flow experiments. This work demonstrates that fast-moving circulating blood clots are easy to recognize against the background PA signal and may aid in early diagnosis.  相似文献   

5.
Confocal endoscopy has been widely used to obtain fine optically sectioned images. However, confocal endomicroscopic images are formed by point-by-point scanning in both lateral and axial directions, which results in long image acquisition time. Here, an endomicroscope with telecentric configuration is presented to achieve nonmechanical and rapid axial scanning for volumetric fluorescence imaging. In our system, optical sectioning in wide-field fashion is obtained through HiLo imaging with a digital micromirror device. Axial scanning, without mechanical moving parts, is conducted by digital focus adjustment using an electrically tunable lens, offering constant magnification and contrast. We demonstrate imaging performance of our system with optically sectioned images using fluorescently labeled beads, as well as ex vivo mice cardiac tissue samples. Our system provides multiple advantages, in terms of improved scanning range, and reduced image acquisition time, which shows great potentials for three-dimensional biopsies of volumetric biological samples.  相似文献   

6.
In this study, a novel photoacoustic microscopy (PAM) probe integrating white‐light microscopy (WLM) modality that provides guidance for PAM imaging and complementary information is implemented. One single core of an imaging fiber bundle is employed to deliver a pulsed laser for photoacoustic excitation for PAM mode, which provides high resolution with deep penetration. Meanwhile, for WLM mode, the imaging fiber bundle is used to transmit two‐dimensional superficial images. Lateral resolution of 7.2 μm for PAM is achieved. Since miniature components are used, the probe diameter is only 1.7 mm. Imaging of phantom and animals in vivo is conducted to show the imaging capability of the probe. The probe has several advantages by introducing the WLM mode, such as being able to conveniently identify regions of interest and align the focus for PAM mode. The prototype of an endoscope shows potential to facilitate clinical photoacoustic endoscopic applications.  相似文献   

7.
提出一种反演生物组织粘弹信息的新型无损光声粘弹显微成像方法,它是以强度调制激光作为激发源,通过检测光声(Photoacoustic,PA)信号的相位重建组织粘弹特性分布的成像方法.实验利用不同浓度的琼脂样品来验证光声粘弹显微测量中相位随浓度变化的依赖关系.利用埋有头发丝的琼脂样品来测试这种显微方法的成像分辨率.利用具有不同粘弹性的离体生物组织来验证系统的成像能力.实验结果表明,这种新方法能够高分辨率和高对比度地重建出具有不同粘弹性的生物组织的光声粘弹显微图像,有望实现组织结晶类病变水平的显微在体检测.  相似文献   

8.
A bimorph transducer was proposed to improve the detection sensitivity and imaging depth of photoacoustic and ultrasound (PAUS) dermoscope. By applying the bimorph transducer, the imaging depth and sensitivity of PAUS dermoscope were enhanced by simultaneously improving excitation efficiency and reception bandwidth. The integrated design of the imaging head of the dermoscope makes it highly convenient for detecting human skin. The PAUS imaging performance was demonstrated via visualizing subcutaneous tumor and depicting full structures of different skin layers from epidermis to subcutaneous tissue. The results confirm that the dermoscope with the bimorph transducer is well suited for PA and US dual‐modality imaging, which can provide multi‐information for skin disease.  相似文献   

9.
Optoacoustic tomography (OAT) and magnetic resonance imaging (MRI) provide highly complementary capabilities for anatomical and functional imaging of living organisms. Herein, we investigate on the feasibility of combining both modalities to render concurrent images. This was achieved by introducing a specifically-designed copper-shielded spherical ultrasound array into a preclinical MRI scanner. Phantom experiments revealed that the OAT probe caused minimal distortion in the MRI images, while synchronization of the laser and the MRI pulse sequence enabled defining artifact-free acquisition windows for OAT. Good dynamic OAT contrast from superparamagnetic iron oxide nanoparticles, a commonly used agent for MRI contrast enhancement, was also observed. The hybrid OAT-MRI system thus provides an excellent platform for cross-validating functional readings of both modalities. Overall, this initial study serves to establish the technical feasibility of developing a hybrid OAT-MRI system for biomedical research.  相似文献   

10.
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer with metastatic potential. To reduce reoperations due to nonradical excision, there is a need to develop a technique for identification of tumor margins preoperatively. Photoacoustic (PA) imaging is a novel imaging technology that combines the strengths of laser optics and ultrasound. Our aim was to determine the spectral signature of cSCC using PA imaging and to use this signature to visualize tumor architecture and borders. Two‐dimensional PA images of 33 cSCCs and surrounding healthy skin were acquired ex vivo, using 59 excitation wavelengths from 680 to 970 nm. The spectral response of the cSCCs was compared to healthy tissue, and the difference was found to be greatest at wavelengths in the range 765 to 960 nm (P < .05). Three‐dimensional PA images were constructed from spectra obtained in the y‐z plane using a linear stepper motor moving along the x‐plane. Spectral unmixing was then performed which provided a clear three‐dimensional view of the distribution of tumor masses and their borders.  相似文献   

11.
Successful therapy of twin‐to‐twin transfusion syndrome requires accurate imaging to guide laser photocoagulation of the anastomosing placental vessels. Photoacoustic (PA) imaging is an alternative imaging method that provides contrast for hemoglobin, and in this study, it was used to visualize chorionic superficial and subsurface vasculature in human placentas. The strong potential of PA imaging to guide minimally invasive fetal therapies was demonstrated. Further details can be found in the article by Efthymios Maneas, Rosalind Aughwane, Nam Huynh, et al. ( e201900167 ).

  相似文献   


12.
Coronary artery disease (CAD) remains a leading cause of mortality and warrants new imaging approaches to better guide clinical care. We report on a miniaturized, hybrid intravascular catheter and imaging system for comprehensive coronary artery imaging in vivo. Our catheter exhibits a total diameter of 1.0 mm (3.0 French), equivalent to standalone clinical intravascular ultrasound (IVUS) catheters but enables simultaneous near-infrared fluorescence (NIRF) and IVUS molecular-structural imaging. We demonstrate NIRF-IVUS imaging in vitro in coronary stents using NIR fluorophores, and compare NIRF signal strengths for prism and ball lens sensor designs in both low and high scattering media. Next, in vivo intravascular imaging in pig coronary arteries demonstrates simultaneous, co-registered molecular-structural imaging of experimental CAD inflammation on IVUS and distance-corrected NIRF images. The obtained results suggest substantial potential for the NIRF-IVUS catheter to advance standalone IVUS, and enable comprehensive phenotyping of vascular disease to better assess and treat patients with CAD.  相似文献   

13.
Mid-infrared (MIR) microscopic imaging of indolent and aggressive lymphomas was performed including formalin-fixed and paraffin-embedded samples of six follicular lymphomas and 12 diffuse large B-cell-lymphomas as well as reactive lymph nodes to investigate benefits and challenges for lymphoma diagnosis. MIR images were compared to defined pathological characteristics such as indolent versus aggressive versus reactive, germinal centre versus activated cell-of-origin (COO) subtypes, or a low versus a high proliferative index and level of PD-L1 expression. We demonstrated that MIR microscopic imaging can differentiate between reactive lymph nodes, indolent and aggressive lymphoma samples. Also, it has potential to be used in the subtyping of lymphomas, as shown with the differentiation between COO subtypes, the level of proliferation and PD-L1 expression. MIR microscopic imaging is a promising tool for diagnosis and subtyping of lymphoma and further evaluation is needed to fully explore the advantages and disadvantages of this method for pathological diagnosis.  相似文献   

14.
Currently, most biometric methods mainly use single features, making them easily forged and cracked. In this study, a novel triple-layers biometric recognition method, based on photoacoustic microscopy, is proposed to improve the security of biometric identity recognition. Using the photoacoustic (PA) dermoscope, three-dimensional absorption-structure information of the fingers was obtained. Then, by combining U-Net, Gabor filtering, wavelet analysis and morphological transform, a lightweight algorithm called photoacoustic depth feature recognition algorithm (PADFR) was developed to automatically realize stratification (the fingerprint, blood vessel fingerprint and venous vascular), extracting feature points and identity recognition. The experimental results show that PADFR can automatically recognize the PA hierarchical features with an average accuracy equal to 92.99%. The proposed method is expected to be widely used in biometric identification system due to its high security.  相似文献   

15.
One of the key limitations for the clinical translation of photoacoustic imaging is penetration depth that is linked to the tissue maximum permissible exposures (MPE) recommended by the American National Standards Institute (ANSI). Here, we propose a method based on deep learning to virtually increase the MPE in order to enhance the signal‐to‐noise ratio of deep structures in the brain tissue. The proposed method is evaluated in an in vivo sheep brain imaging experiment. We believe this method can facilitate clinical translation of photoacoustic technique in brain imaging, especially in transfontanelle brain imaging in neonates.  相似文献   

16.
Vascular disrupting agents disrupt tumor vessels, blocking the nutritional and oxygen supply tumors need to thrive. This is achieved by damaging the endothelium lining of blood vessels, resulting in red blood cells (RBCs) entering the tumor parenchyma. RBCs present in the extracellular matrix are exposed to external stressors resulting in biochemical and physiological changes. The detection of these changes can be used to monitor the efficacy of cancer treatments. Spectroscopic photoacoustic (PA) imaging is an ideal candidate for probing RBCs due to their high optical absorption relative to surrounding tissue. The goal of this work is to use PA imaging to monitor the efficacy of the vascular disrupting agent 5,6-Dimethylxanthenone-4-acetic acid (DMXAA) through quantitative analysis. Then, 4T1 breast cancer cells were injected subcutaneously into the left hind leg of eight BALB/c mice. After 10 days, half of the mice were treated with 15 mg/kg of DMXAA and the other half were injected with saline. All mice were imaged using the VevoLAZR X PA system before treatment, 24 and 72 hours after treatment. The imaging was done at six wavelengths and linear spectral unmixing was applied to the PA images to quantify three forms of hemoglobin (oxy, deoxy and met-hemoglobin). After imaging, tumors were histologically processed and H&E and TUNEL staining were used to detect the tissue damage induced by the DMXAA treatment. The total hemoglobin concentration remained unchanged after treatment for the saline treated mice. For DMXAA treated mice, a 10% increase of deoxyhemoglobin concentration was detected 24 hours after treatment and a 22.6% decrease in total hemoglobin concentration was observed by 72 hours. A decrease in the PA spectral slope parameters was measured 24 hours after treatment. This suggests that DMXAA induces vascular damage, causing red blood cells to extravasate. Furthermore, H&E staining of the tumor showed areas of bleeding with erythrocyte deposition. These observations are further supported by the increase in TUNEL staining in DMXAA treated tumors, revealing increased cell death due to vascular disruption. This study demonstrates the capability of PA imaging to monitor tumor vessel disruption by the vascular disrupting agent DMXAA.  相似文献   

17.
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy (“gold standard”) involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as “gold standard” analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.  相似文献   

18.
Chicken embryos have been proven to be an attractive vertebrate model for biomedical research. They have helped in making significant contributions for advancements in various fields like developmental biology, cancer research and cardiovascular studies. However, a non‐invasive, label‐free method of imaging live chicken embryo at high resolution still needs to be developed and optimized. In this work, we have shown the potential of photoacoustic tomography (PAT) for imaging live chicken embryos cultured in bioengineered eggshells. Laser pulses at wavelengths of 532 and 740 nm were used for attaining cross‐sectional images of chicken embryos at different developmental stages. Cross‐sections along different depths were imaged to gain knowledge of the relative depth of different vessels and organs. Due to high optical absorption of vasculature and embryonic eye, images with good optical contrast could be acquired using this method. We have thus reported a label‐free method of performing cross‐sectional imaging of chicken embryos at high resolution demonstrating the capacity of PAT as a promising tool for avian embryo imaging.  相似文献   

19.
Wide-field fluorescence microscopy (WFFM) is widely adopted in biomedical studies, due to its high imaging speed over large field-of-views. However, WFFM is susceptible to out-of-focus background. To overcome this problem, structured illumination microscopy (SIM) was proposed as a wide-field, optical-sectioning technique, which needs multiple raw images for image reconstruction and thus has a lower imaging speed. Here we propose SIM with interleaved reconstruction, to make SIM of lossless speed. We apply this method in volumetric imaging of neural network dynamics in brains of zebrafish larva in vivo.  相似文献   

20.
Inside Cover     
《Journal of biophotonics》2023,16(3):e202370005
A novel volumetric information fusion based on joint weighted evaluation and stationary wavelet transform is proposed. Threedimensional stationary wavelet transform was performed on multi-focus data to obtain wavelet coefficients. Differential evolution based on joint weighted evaluation was then employed to optimize the block size of division. Corresponding sub-coefficients of multi-focus data were fused with the proposed fusion rule. Finally, large volumetric and high-resolution photoacoustic imaging can be achieved by applying the inverse stationary wavelet transform. Further details can be found in the article by Xianlin Song, Sihang Li, Zhuangzhuang Wang, and| Xiongjun Cao ( e202200234 )

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号