首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expansion microscopy is a super‐resolution method that allows expanding uniformly biological samples, by increasing the relative distances among fluorescent molecules labeling specific components. One of the main concerns in this approach regards the isotropic behavior at the nanoscale. The present study aims to determine the robustness of such a technique, quantifying the expansion parameters i.e. scale factor, isotropy, uniformity. Our focus is on the nuclear pore complex (NPC), as well‐known nanoscale component endowed of a preserved and symmetrical structure localized on the nuclear envelope. Here, we show that Nup153 is a good reporter to quantitatively address the isotropy of the expansion process. The quantitative analysis carried out on NPCs, at different spatial scales, allows concluding that expansion microscopy can be used at the nanoscale to measure subcellular features with an accuracy from 10 to 5 nm. Therefore, it is an excellent method for structural studies of macromolecular complexes.  相似文献   

2.
The recently developed ultrastructure expansion microscopy (U-ExM) technique allows us to increase the spatial resolution within a cell or tissue for microscopic imaging through the physical expansion of the sample. In this study, we validate the use of U-ExM in Trypanosoma brucei measuring the expansion factors of several different compartments/organelles and thus verify the isotropic expansion of the cell. We furthermore demonstrate the use of this sample preparation protocol for future studies by visualizing the nucleus and kDNA, as well as proteins of the cytoskeleton, the basal body, the mitochondrion and the endoplasmic reticulum. Lastly, we discuss the challenges and opportunities of U-ExM.  相似文献   

3.
Either modulated illumination or temporal fluctuation analysis can assist super‐resolution techniques in overcoming the diffraction limit of conventional optical microscopy. As they are not contradictory to each other, an effective combination of spatial and temporal super‐resolution mechanisms would further improve the resolution of fluorescent images. Here, a super‐resolution imaging method called fluctuation‐enhanced Airyscan technology (FEAST) is proposed, which achieves ~40 nm lateral imaging resolution and is useful for a range of fluorescent proteins and organic dyes. It was demonstrated not only to obtain different subcellular super‐resolution images, but also to improve the accuracy of counting the average human epidermal growth factor receptor 2 (HER2) copy number for diagnosis in breast cancer. Furthermore, the combination of FEAST and sample expansion microscopy (Ex‐FEAST) improves the lateral resolution to ~26 nm.  相似文献   

4.
Expansion microscopy is a recently introduced imaging technique that achieves super‐resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20–30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000‐fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25–30 nm on conventional epifluorescence microscopes. X10 provides multi‐color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high‐quality super‐resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge.  相似文献   

5.
Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.   相似文献   

6.
Light‐sheet fluorescence microscopy (LSFM) is a powerful technique that can provide high‐resolution images of biological samples. Therefore, this technique offers significant improvement for three‐dimensional (3D) imaging of living cells. However, producing high‐resolution 3D images of a single cell or biological tissues, normally requires high acquisition rate of focal planes, which means a large amount of sample sections. Consequently, it consumes a vast amount of processing time and memory, especially when studying real‐time processes inside living cells. We describe an approach to minimize data acquisition by interpolation between planes using a phase retrieval algorithm. We demonstrate this approach on LSFM data sets and show reconstruction of intermediate sections of the sparse samples. Since this method diminishes the required amount of acquisition focal planes, it also reduces acquisition time of samples as well. Our suggested method has proven to reconstruct unacquired intermediate planes from diluted data sets up to 10× fold. The reconstructed planes were found correlated to the original preacquired samples (control group) with correlation coefficient of up to 90%. Given the findings, this procedure appears to be a powerful method for inquiring and analyzing biological samples.  相似文献   

7.
Stimulated emission depletion (STED) microscopy is a prominent approach of super‐resolution optical microscopy, which allows cellular imaging with so far unprecedented unlimited spatial resolution. The introduction of time‐gated detection in STED microscopy significantly reduces the (instantaneous) intensity required to obtain sub‐diffraction spatial resolution. If the time‐gating is combined with a STED beam operating in continuous wave (CW), a cheap and low labour demand implementation is obtained, the so called gated CW‐STED microscope. However, time‐gating also reduces the fluorescence signal which forms the image. Thereby, background sources such as fluorescence emission excited by the STED laser (anti‐Stokes fluorescence) can reduce the effective resolution of the system. We propose a straightforward method for subtraction of anti‐Stokes background. The method hinges on the uncorrelated nature of the anti‐Stokes emission background with respect to the wanted fluorescence signal. The specific importance of the method towards the combination of two‐photon‐excitation with gated CW‐STED microscopy is demonstrated. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Recently developed super‐resolution microscopy techniques are changing our understanding of lipid rafts and membrane organisation in general. The lipid raft hypothesis postulates that cholesterol can drive the formation of ordered domains within the plasma membrane of cells, which may serve as platforms for cell signalling and membrane trafficking. There is now a wealth of evidence for these domains. However, their study has hitherto been hampered by the resolution limit of optical microscopy, making the definition of their properties problematic and contentious. New microscopy techniques circumvent the resolution limit and, for the first time, allow the fluorescence imaging of structures on length scales below 200 nm. This review describes such techniques, particularly as applied to the study of membrane organisation, synthesising newly emerging facets of lipid raft biology into a state‐of‐the art model. Editor's suggested further reading in BioEssays: Super‐resolution imaging prompts re‐thinking of cell biology mechanisms Abstract and Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair‐correlation analysis Abstract  相似文献   

9.
Photoacoustic microscopy (PAM) provides a fundamentally new tool for a broad range of studies of biological structures and functions. However, the use of PAM has been largely limited to small vertebrates due to the large size/weight and the inconvenience of the equipment. Here, we describe a portable optical‐resolution photoacoustic microscopy (pORPAM) system for 3‐dimensional (3D) imaging of small‐to‐large rodents and humans with a high spatiotemporal resolution and a large field of view. We show extensive applications of pORPAM to multiscale animals including mice and rabbits. In addition, we image the 3D vascular networks of human lips, and demonstrate the feasibility of pORPAM to observe the recovery process of oral ulcer and cancer‐associated capillary loops in human oral cavities. This technology is promising for broad biomedical studies from fundamental biology to clinical diseases.   相似文献   

10.
Precise multicolor single molecule localization‐based microscopy (SMLM) requires bright probes with compatible photo‐chemical and spectral properties to resolve distinct molecular species at the nanoscale. The accuracy of multicolor SMLM is further challenged by color channel crosstalk and chromatic alignment errors. These constrains limit the applicability of known reversibly switchable organic dyes for optimized multicolor SMLM. Here, we tested 28 commercially available dyes for their suitability to super‐resolve a known cellular nanostructure. We identified eight novel dyes in different spectral regimes that enable high quality dSTORM imaging. Among those, the spectrally close dyes CF647 and CF680 comprise an optimal dye pair for spectral demixing‐based, registration free multicolor dSTORM with low crosstalk. Combining this dye pair with the separately excited CF568 we performed 3‐color dSTORM to image the relative nanoscale distribution of components of the endocytic machinery and the cytoskeleton.

A major limitation of multicolor single molecule localization based super‐resolution microscopy (SMLM) is the availability of suitable photo‐switchable fluorescent dyes. By screening 28 commercially available dyes, novel dyes in different spectral regimes were identified that are well suited for dual and triple color SMLM with low crosstalk. These novel dyes are employed to image the relative nanoscale distribution of sub‐cellular components.  相似文献   


11.
Many cellular organelles, including endosomes, show compartmentalization into distinct functional domains, which, however, cannot be resolved by diffraction‐limited light microscopy. Single molecule localization microscopy (SMLM) offers nanoscale resolution but data interpretation is often inconclusive when the ultrastructural context is missing. Correlative light electron microscopy (CLEM) combining SMLM with electron microscopy (EM) enables correlation of functional subdomains of organelles in relation to their underlying ultrastructure at nanometer resolution. However, the specific demands for EM sample preparation and the requirements for fluorescent single‐molecule photo‐switching are opposed. Here, we developed a novel superCLEM workflow that combines triple‐color SMLM (dSTORM & PALM) and electron tomography using semi‐thin Tokuyasu thawed cryosections. We applied the superCLEM approach to directly visualize nanoscale compartmentalization of endosomes in HeLa cells. Internalized, fluorescently labeled Transferrin and EGF were resolved into morphologically distinct domains within the same endosome. We found that the small GTPase Rab5 is organized in nanodomains on the globular part of early endosomes. The simultaneous visualization of several proteins in functionally distinct endosomal sub‐compartments demonstrates the potential of superCLEM to link the ultrastructure of organelles with their molecular organization at nanoscale resolution.  相似文献   

12.
Multipotent mesenchymal stem cells (MSCs) hold great promise in regenerative medicine, but one of the biggest challenges facing for their application is the ex vivo expansion to obtain enough undifferentiated cells. Fetal bovine serum (FBS), which can elicit possible contaminations of prion, virus, zoonosis or immunological reaction against xenogenic serum antigens, still remains essential to the culture formulations. There is an urgent need to identify potential factors for the undifferentiated expansion of MSCs to reduce the use of FBS or eventually replace it. A previously recognized housekeeping gene, β2-microglobulin (β2M), is demonstrated to act as a novel growth factor to stimulate the undifferentiated ex vivo expansion and preserve the pluripotency of adult MSCs from various sources. The use of β2M might have promising implications for future clinical application of MSCs.  相似文献   

13.
14.
Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA. Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA‐based protocols. Glyoxal acted faster than PFA, cross‐linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA‐based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.  相似文献   

15.
Abstract Electron microscopy of negatively stained samples of the membrane-bound hydrogenase isolated from Alcaligenes eutrophus was used to obtain enzyme images with an estimated resolution of 2.5 nm. The two subunits with shapes similar to the letter 'U' making up the enzyme could be seen to be joined in two planes orthogonal to each other, making contact with their concave sides. In face-on view, the particle exhibited bilateral symmetry.  相似文献   

16.
The replication of HIV‐1, like that of all viruses, is intimately connected with cellular structures and pathways. For many years, bulk biochemical and cell biological methods were the main approaches employed to investigate interactions between HIV‐1 and its host cell. However, during the past decade advancements in fluorescence imaging technologies opened new possibilities for the direct visualization of individual steps occurring throughout the viral replication cycle. Electron microscopy (EM) methods, which have traditionally been employed for the study of viruses, are complemented by fluorescence microscopy (FM) techniques that allow us to follow the dynamics of virus–cell interaction. Subdiffraction fluorescence microscopy, as well as correlative EM/FM approaches, are narrowing the fundamental gap between the high structural resolution provided by EM and the high temporal resolution and throughput accomplished by FM. The application of modern microscopy to the study of HIV‐1–host cell interactions has provided insights into the biology of the virus which could not easily, or not at all, have been gained by other methods. Here, we review how modern fluorescence imaging techniques enhanced our knowledge of the dynamic and structural changes involved in HIV‐1 particle formation.   相似文献   

17.
福建地区马尾松生物量转换和扩展因子的影响因素   总被引:1,自引:0,他引:1  
欧强新  李海奎  杨英 《生态学报》2017,37(17):5756-5764
基于第8次国家森林资源清查福建省331块马尾松的固定样地调查数据,利用增强回归树法(BRT)研究地上生物量转换和扩展因子(BCEF)和地下BCEF的影响因素。研究结果表明:林分特征因子和地形因子是影响地上BCEF以及地下BCEF的主导因素,二者对地上BCEF影响的相对贡献率之和为87.20%、地下BCEF为86.59%。其中,龄组和坡向分别是林分特征因子和地形因子中影响地上BCEF的最大因素(41.13%和14.52%)。地上BCEF随龄组的增大而逐渐减小;在东南坡最大、西坡最小。此外,龄组和坡向分别是林分特征因子和地形因子中影响地下BCEF的最大因素(41.54%和15.16%)。地下BCEF随龄组的增大而逐渐减增大;在东南坡最小、西坡最大。土壤因子对地上BCEF以及地下BCEF的影响都较小(12.80%和13.41%),腐殖层厚度是土壤因子中影响地上BCEF以及地下BCEF的最大因素(9.02%和9.13%)。在所有的影响因素中,龄组对地上BCEF以及地下BCEF的影响均最大,依据龄组计算相应的BCEF或者建立林龄普适的BCEF模型,可以有效地提高生物量的估算精度。  相似文献   

18.
19.
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two‐thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift. Am J Phys Anthropol 150:551–564, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
After gradually moving away from preparation methods prone to artefacts such as plastic embedding and negative staining for cell sections and single particles, the field of cryo electron microscopy (cryo‐EM) is now heading off at unprecedented speed towards high‐resolution analysis of biological objects of various sizes. This ‘revolution in resolution’ is happening largely thanks to new developments of new‐generation cameras used for recording the images in the cryo electron microscope which have much increased sensitivity being based on complementary metal oxide semiconductor devices. Combined with advanced image processing and 3D reconstruction, the cryo‐EM analysis of nucleoprotein complexes can provide unprecedented insights at molecular and atomic levels and address regulatory mechanisms in the cell. These advances reinforce the integrative role of cryo‐EM in synergy with other methods such as X‐ray crystallography, fluorescence imaging or focussed‐ion beam milling as exemplified here by some recent studies from our laboratory on ribosomes, viruses, chromatin and nuclear receptors. Such multi‐scale and multi‐resolution approaches allow integrating molecular and cellular levels when applied to purified or in situ macromolecular complexes, thus illustrating the trend of the field towards cellular structural biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号