首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundTherapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG.Methods1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed.ResultsWe found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth.ConclusionsComparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis.General significanceOur results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.  相似文献   

2.
Photodynamic therapy (PDT) is generally based on the generation of highly reactive singlet oxygen (1O2) through interactions of photosensitizer, light, and oxygen (3O2). These three components are highly interdependent and dynamic, resulting in variable temporal and spatial 1O2 dose deposition. Robust dosimetry that accounts for this complexity could improve treatment outcomes. Although the 1270 nm luminescence emission from 1O2 provides a direct and predictive PDT dose metric, it may not be clinically practical. We used 1O2 luminescence (or singlet oxygen luminescence (SOL)) as a gold-standard metric to evaluate potentially more clinically feasible dosimetry based on photosensitizer bleaching. We performed in vitro dose-response studies with simultaneous SOL and photosensitizer fluorescence measurements under various conditions, including variable 3O2, using the photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC). The results show that SOL was always predictive of cytotoxicity and immune to PDT's complex dynamics, whereas photobleaching-based dosimetry failed under hypoxic conditions. However, we identified a previously unreported 613 nm emission from mTHPC that indicates critically low 3O2 levels and can be used to salvage photobleaching-based dosimetry. These studies improve our understanding of PDT processes, demonstrate that SOL is a valuable gold-standard dose metric, and show that when used judiciously, photobleaching can serve as a surrogate for 1O2 dose.  相似文献   

3.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A low temperature-assisted and oxalyl dihydrazide fuel-induced combustion synthesized series of uncalcined MgAl2O4:Eu3+ nanophosphors showed an average crystallite size of ~20 nm, and bandgap energy (Eg) of 4.50–5.15 eV, and were validated using density functional theory and found to match closely with the experimental values. The photoluminescence characteristic emission peaks of Eu3+ ions were recorded between 480 and 680 nm. The nanophosphors excited at 392 nm showed f–f transitions assigned as 5D07FJ (J = 0, 1, 2, and 3). The optimized MgAl2O4 phosphors had Commission Internationale de l'Eclairage coordinates in the red region, a correlated colour temperature of 2060 K, and a colour purity of 98.83%. The estimated luminescence quantum efficiency ( η) was observed to be ~63% using Judd–Ofelt analysis. Electrochemical and photocatalytic performance were explored and indicated its multifunctional applications. Therefore, MgAl2O4:Eu3+ nanophosphors could be used for the fabrication of light-emitting diodes, industrial dye degradation, and as electrodes for supercapacitor applications.  相似文献   

5.
Alternative oxidase (AOX) catalyzes the four-electron reduction of dioxygen to water as an additional terminal oxidase, and the catalytic reaction is critical for the parasite to survive in its bloodstream form. Recently, the X-ray crystal structure of trypanosome alternative oxidase (TAO) complexed with ferulenol was reported and the molecular structure of the non-heme diiron center was determined. The binding of O2 was a unique side-on type compared to other iron proteins. In order to characterize the O2 binding state of TAO, the O2 binding states were searched at a quantum mechanics/molecular mechanics (QM/MM) theoretical level in the present study. We found that the most stable O2 binding state is the end-on type, and the binding states of the side-on type are higher in energy. Based on the binding energies and electronic structure analyses, O2 binds very weakly to the TAO iron center (ΔE =6.7 kcal mol?1) in the electronic state of Fe(II)…OO, not in the suggested charge transferred state such as the superoxide state (Fe(III)OO· ) as seen in hemerythrin. Coordination of other ligands such as water, Cl?, CN?, CO, N3? and H2O2 was also examined, and H2O2 was found to bind most strongly to the Fe(II) site by ΔE = 14.0 kcal mol?1. This was confirmed experimentally through the measurement of ubiquinol oxidase activity of TAO and Cryptosporidium parvum AOX which was found to be inhibited by H2O2 in a dose-dependent and reversible manner.  相似文献   

6.
A significant advance made in combinatorial approach research was that the emphasis shifted from simple mixing to intelligent screening, so as to improve the efficiency and accuracy of discovering new materials from a larger number of diverse compositions. In this study, the long‐lasting luminescence of SrAl2O4, which is co‐doped with Eu2+, Ce3+, Dy3+, Li+ and H3BO3, was investigated based on a combinatorial approach in conjunction with the Taguchi method. The minimal number of 16 samples to be tested (five dopants and four levels of concentration) were designed using the Taguchi method. The samples to be screened were synthesized using a parallel combinatorial strategy based on ink‐jetting of precursors into an array of micro‐reactor wells. The relative brightness of luminescence of the different phosphors over a particular period was assessed. Ce3+ was identified as the constituent that detrimentally affected long‐lasting luminescence. Its concentration was optimized to zero. Li+ had a minor effect on long‐lasting luminescence but the main factors that contributed to the objective property (long‐lasting luminescence) were Eu2+, Dy3+ and H3BO3, and the concentrations of these dopants were optimized to 0.020, 0.030 and 0.300, respectively, for co‐doping into SrAl2O4. This study demonstrates that the utility of the combinatorial approach for evaluating the effect of components on an objective property (e.g. phosphorescence) and estimating the expected performance under the optimal conditions can be improved by the Taguchi method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Simple acidification of aqueous alkaline peroxynitrite quantitatively generates singlet (1Δg) molecular oxygen, detected and quantitated spectroscopically (1270 nm). This observation provides a chemical basis for physiological cytotoxicity of ONOO? generated in the diffusion - controlled reaction of cellular NO? and O. The experiments consist of (i) chemical generation of ONOO? from NO? gas and KO2 powder in alkaline aqueous solution; (ii) absorption spectral identification of ONOO? in the near-UV with maximum at 302 nm; (iii) spectroscopic identification of 1O2 by its emission band at 1200–1340 nm with maximum at 1275 nm; and (iv) quantitation of 1O2 generated in ONOO?/H+ reaction by comparison of the chemiluminescence intensity at 1270 nm with that from H2O2/OCl? reaction that generates 1O2 with unit efficiency at alkaline pH. 1O2 was generated with unit efficiency with respect to ONOO? concentration by the ONOO?/H+ reaction.  相似文献   

8.
Long-persistent phosphorescent smart paints have the ability to continue glowing in the dark for a prolonged time period to function as energy-saving products. Herein, new epoxy/silica nanocomposite paints were prepared with different concentrations of lanthanide-doped aluminate nanoparticles (LAN; SrAl2O4:Eu2+,Dy3+). The LAN pigment was firstly coated with silicon dioxide (SiO2) utilizing the heterogeneous precipitation technique to provide LAN-encapsulated between SiO2 nanoparticles (LAN@SiO2). The epoxy/silica/lanthanide-doped aluminate nanoparticles (ESLAN) nanocomposite paints were coated on steel. The prepared ESLAN paints were studied by transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray fluorescence (XRF) analysis, and energy-dispersive X-ray spectroscopy (EDS). The transparency and coloration properties of the nanocomposite coated films were explored by CIE Lab parameters and photoluminescence spectra. The ultraviolet-induced luminescence properties of the transparent coated films demonstrated greenish phosphorescence at 518 nm upon excitation at 368 nm. Both hardness and hydrophobic activities were investigated. The anticorrosion activity of the nanocomposite films coated onto mild steel substrates immersed in aqueous sodium chloride (NaCl(aq)) (3.5%) was studied by electrochemical impedance spectroscopy (EIS). The silica-containing coatings were monitored to exhibit anticorrosion properties. Additionally, the nanocomposite films with LAN@SiO2 (25%) exhibited the optimized long-lasting luminescence properties in the dark for 90 min. The nanocomposite films showed highly reversible and durable long-lived phosphorescence.  相似文献   

9.
This study developed a portable, low-cost field respirometer for measuring oxygen consumption rates of large-bodied fishes. The respirometer performed well in laboratory tests and was used to measure the oxygen consumption rates ( O2) of bull sharks Carcharhinus leucas (mean: 249.21 ± 58.10 mg O2 kg−1 h−1 at 27.05°C). Interspecific comparisons and assessments of oxygen degradation curves indicated that the respirometer provided reliable measurements of O2. This system presents a field-based alternative to laboratory respirometers, opening opportunities for studies on species in remote localities, increasing the ability to validate physiological field studies.  相似文献   

10.
The synthesis and crystal structure of an anionic phosphorescent iridium complex TBA[Ir(dfppy)2(NCS)2] (1) were reported. 1 can selectively detect Hg2+ with the help of UV-Vis absorption and emission spectra titration. In the presence of Hg2+, the obvious decrease of the luminescence intensity at 475 nm was investigated, which could be observed by the naked eyes. The phosphorescence quantum efficiency in CH3CN solution changed from 0.07 to 0.00085. No obvious spectra changes were observed upon addition of a large excess of other transition metals. Due to its strong thiophilic affinity, the special chemical reaction induced by Hg2+ is responsible for the significant change of absorption and luminescence spectra, which is confirmed by ESI-MS.  相似文献   

11.
Detection of Active Oxygen Species in Biological Systems   总被引:6,自引:0,他引:6  
1. Cypridina luciferin analogues, 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (MCLD) and 2-methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-one(CLA), react with O2 or 1O2 to emit light in visible region. Such chemiluminescences were used for the detection of O2 or 1O2 in activated leukocyte systems and myeloperoxidase (granulocyte-extract) + Br + H2O2 systems in vitro.2. The mechanism of MCLA (CLA)-dependent luminescence is described in detail. Superoxide generated from sinusoidal cells in acute ethanol intoxication of rats was detected by MCLA-dependent luminescence from the surface of perfused rat liver (organ luminescence).3. Furthermore, with alive animals, O2 generated in the lung of rats with necrotized pancreatitis and that in the stomach of rats after ischemia/reperfusion were detected by their organ luminescences.  相似文献   

12.
In this paper, the Eu3+–Eu2+ (4%, molar ratio)‐doped xAl2O3–ySiO2 (x = 0–2.5, y = 1–5) and xAl2O3–zMgO (x = 0–1.5, z = 0–3) composites phosphors with different Al2O3 to SiO2 (A/S) and Al2O3 to MgO (A/M) ratios were prepared using a high‐temperature solid‐state reaction under air atmosphere. The effects of the A/S and A/M on luminescence properties, crystal structure, electron spin resonance, and Commission Internationale de l’Eclairage chromaticity coordinates of the samples were systematically analyzed. These results indicated that the different A/S and A/M ratios in the matrix effectively affected the crystal phase, degrees of self‐reduction of Eu3+, and led the relative emission intensity of Eu2+/Eu3+ to change and adjust.  相似文献   

13.
The complexes Au2Cl2(P-P) with P-P=biphep (2,2-bis(diphenylphosphino)-1,1-biphenyl), binap (2,2-bis(diphenylphosphino)-1,1-binaphthyl) and xantphos (9,9-dimethyl-4,5-bis(diphenyl-phosphino)xanthene), were prepared and characterized by elemental analysis and ESI-MS. The solid compounds show a r.t. phosphorescence. While the binap complex emits from an intraligand (IL) triplet, the luminescence of the biphep complex originates from a metal-centered (MC) triplet which is presumably lowered by gold-gold interaction. The xantphos complex displays a dual phosphorescence. In this case, the emitting triplets are of the IL and MC type.  相似文献   

14.
15.
《Translational oncology》2020,13(11):100843
Ferroptosis is a novel form of programmed cell death characterized by an iron-dependent increase in reactive oxygen species (ROS). However, the role of ROS in the regulation of ferroptosis remains elusive. In this study, for the first time, we demonstrate that sodium selenite (SS), a well-established redox-active selenium compound, is a novel inducer of ferroptosis in a variety of human cancer cells. Potent ferroptosis inhibitors, such as ferrostatin-1 (Fer-1) and deferoxamine (DFO), rescue cells from SS-induced ferroptosis. Furthermore, SS down-regulates ferroptosis regulators; solute carrier family 7 member 11 (SLC7A11), glutathione (GSH), and glutathione peroxidase 4 (GPx4), while it up-regulates iron accumulation and lipid peroxidation (LPO). These SS-induced ferroptotic responses are achieved via ROS, in particular superoxide (O2) generation. Antioxidants such as superoxide dismutase (SOD) and Tiron not only scavenged O2 production, but also markedly rescued SLC7A11 down-regulation, GSH depletion, GPx4 inactivation, iron accumulation, LPO, and ferroptosis. Moreover, iron chelator DFO significantly reduces the O2 production, indicating a positive feedback regulation between O2 production and iron accumulation. Taken together, we have identified SS as a novel ferroptosis inducing agent in various human cancer models.  相似文献   

16.
Addition of KCN to Helix pomatia β-hemocyanin fully saturated with either O2 or CO results in a decrease of the spectroscopic properties of the protein (absorbance at 340 nm and luminescence at 550 nm) due to the displacement of the gaseous ligands (O2 or CO) from the active site. The anionic form of cyanide (CN?) is supposed to bind to the active site; its intrinsic affinity for the protein, as calculated from independent O2 and CO displacement experiments, is between 2 and 6 × 106M?1. The replacement of O2 or CO shows some differences which may be correlated with the different modes of binding at the active site. Thus, while displacement of oxygen by cyanide is hyperbolic, addition of cyanide to carbonylated hemocyanin shows a lag phase. This finding suggests the formation of a mixed liganded complex at the active site. The simultaneous presence of CO and CN? at the active site of hemocyanin is also supported by the experiment in which addition of small amounts of KCN to hemocyanin partially saturated with O2 and CO gives rise to an increase of emission intensity and a concomitant decrease of the O2 absorption band. The mixed-liganded species displays luminescence properties similar to those of CO-saturated hemocyanin, and the formation of the complex is reversible on dialysis or oxygenation.  相似文献   

17.
The chemical nature of the sensitizer and its selective uptake by malignant cells are decisive to choose an appropriate biocompatible carrier, able to preserve the photosensitizing characteristics of the dye. In this paper we demonstrate the photodynamic properties of three chlorins, derived from chlorophyll a, and the usefulness of liposomal carriers to design pharmaceutical formulations. The chlorins have been quantitatively incorporated into stable liposomes obtained from a mixture of l-α-palmitoyloleoylphosphatidylcholine and l-α-dioleoylphosphatidylserine in a 13.5:1.5 molar ratio (POPC/OOPS-liposomes). The chlorin uptake by skin fibroblasts increases steadily, reaching in all cases a plateau level dependent on both the chlorin structure and the vehicle employed. The photophysical properties of the three chlorins in THF are nearly identical and fulfill the requirements for a PDT photosensitizer. Incorporation of chlorins into liposomes induces important changes in their photophysics, but does not impair their cellular uptake or their cell photosensitization ability. In fact we observe in the cells the same photophysical behavior as in THF solution. Specifically, we demonstrate, by recording the near-IR phosphorescence of 1O2, that the chlorins are able to photosensitize the production of 1O2 in the cell membrane. The cell-photosensitization efficiency depended on the chlorin and cell line nature, the carrier, and the length of pre-incubation and post-irradiation periods. The high photodynamic activity of chlorin-loaded liposomes and the possibility to design liposomal carriers to achieve a specific target site favors this approach to obtain an eventual pharmaceutical formulation.  相似文献   

18.
Methods are described for measuring the light emitted by an emulsion of luminous bacteria of given thickness, and calculating the light emitted by a single bacterium, measuring 1.1 x 2.2 micra, provided there is no absorption of light in the emulsion. At the same time, the oxygen consumed by a single bacterium was measured by recording the time for the bacteria to use up .9 of the oxygen dissolved in sea water from air (20 per cent oxygen). The luminescence intensity does not diminish until the oxygen concentration falls below 2 per cent, when the luminescence diminishes rapidly. Above 2 per cent oxygen (when the oxygen dissolving in sea water from pure oxygen at 760 mm. Hg pressure = 100 per cent) the bacteria use equal amounts of oxygen in equal times, while below 2 per cent oxygen it seems very likely that rate of oxygen absorption is proportional to oxygen concentration. By measuring the time for a tube of luminous bacteria of known concentration saturated with air (20 per cent oxygen) to begin to darken (2 per cent oxygen) we can calculate the oxygen absorbed by one bacterium per second. The bacteria per cc. are counted on a blood counting slide or by a centrifugal method, after measuring the volume of a single bacterium (1.695 x 10–12 cc.). Both methods gave results in good agreement with each other. The maximum value for the light from a single bacterium was 24 x 10–14 lumens or 1.9 x 10–14 candles. The maximum value for lumen-seconds per mg. of oxygen absorbed was 14. The average value for lumen-seconds per mg. O2 was 9.25. The maximum values were selected in calculating the efficiency of light production, since some of the bacteria counted may not be producing light, although they may still be using oxygen. The "diet" of the bacteria was 60 per cent glycerol and 40 per cent peptone. To oxidize this mixture each mg. of oxygen would yield 3.38 gm. calories or 14.1 watts per second. 1 lumen per watt is therefore produced by a normal bacterium which emits 14 lumen-seconds per mg. O2 absorbed. Since the maximum lumens per watt are 640, representing 100 per cent efficiency, the total luminous efficiency if .00156. As some of the oxygen is used in respiratory oxidation which may have nothing to do with luminescence, the luminescence efficiency must be higher than 1 lumen per watt. Experiments with KCN show that this substance may reduce the oxygen consumption to 1/20 of its former value while reducing the luminescence intensity only ¼. A partial separation of respiratory from luminescence oxidations is therefore effected by KCN, and our efficiency becomes 5 lumens per watt, or .0078. This is an over-all efficiency, based on the energy value of the "fuel" of the bacteria, regarded as a power plant for producing light. It compares very favorably with the 1.6 lumens per watt of a tungsten vacuum lamp or the 3.9 lumens per watt of a tungsten nitrogen lamp, if we correct the usual values for these illuminants, based on watts at the lamp terminals, for a 20 per cent efficiency of the power plant converting the energy of coal fuel into electric current. The specific luminous emission of the bacteria is 3.14 x 10–6 lumens per cm2. One bacterium absorbs 215,000 molecules of oxygen per second and emits 1,280 quanta of light at λmax = 510µµ. If we suppose that a molecule of oxygen uniting with luminous material gives rise to the emission of 1 quantum of light energy, only 1/168 of the oxygen absorbed is used in luminescence. On this basis the efficiency becomes 168 lumens per watt or 26.2 per cent.  相似文献   

19.
Fluorescence and phosphorescence measurements have been carried out on single-p tryptophan (Trp 43 or Trp 75)-containing mutants of Tet repressor (Tet R). Tet R containing Trp 43, the residue localized in the DNA recognition helix of the repressor, has been used to observe the binding of Tet R to two 20-bp DNA sequences of tet O1 and tet O2 operators. Binding of Tet R to tet O1 operator leads to a 78% decrease of the repressor fluorescence intensity, with an accompanying 20-nm blue shift of its fluorescence emission maximum to 330 nm. Upon binding of Tet R to tet O2 operator, the Trp 43 fluorescence intensity is quenched by 60%, and a 10-nm shift of its emission maximum to 340 nm occurs. Solute fluorescence quenching studies, using acrylamide, performed at low ionic strength indicate that in both the complex of Tet R with the O1 and that with the O2 operator, Trp 43 is moderately buried, as indicated by a bimolecular rate quenching constant of about 1.8 × 109 M–1 sec–1. In contrast to the Tet R–tet O2 complex, the Stern–Volmer acrylamide quenching constant K sv of the complex with tet O1 operator changes from 7.5 M–1 at 5 mM NaCl to 22 M–1 at 200 mM NaCl, indicating different exposures of Trp 43 in the two complexes in solutions of higher ionic strength. Phosphorescence studies showed a 0–0 vibronic transition at 408 and 403 nm for Trp 43 and Trp 75, respectively. Upon binding of Tet R to the tet operators, we observed red shifts of 0–0 vibronic bands of Trp 43 to 413 and 412 nm for tet O1 and tet O2 operator, respectively, and the phosphorescence triplet lifetime of Trp 43 at 75 K was quenched from 6.0–5.5 to 3.5–3.3 sec. The thermal phosphorescence quenching profile ranged from –200°C to –20°C, and differed drastically for the two complexes, suggesting different dynamics of the microenvironment of the Trp 43 residue. The luminescence data for Trp 43 of Tet R suggest that the recognition helix of Tet R interacts in different fashions with the tet O1 and tet O2 operators.  相似文献   

20.
Photodynamic therapy (PDT) is a cancer treatment modality where photosensitizer (PS) is activated by visible and near IR light to produce singlet oxygen (1O2). However, 1O2 has a short lifetime (<40 ns) and cannot diffuse (<20 nm) beyond the cell diameter (e.g., ∼1800 nm). Thus, 1O2 damage is both spatially and temporally limited and does not produce bystander effect. In a heterogeneous tumor, cells escaping 1O2 damage can regrow after PDT treatment. To overcome these limitations, we developed a prodrug concept (PS–L–D) composed of a photosensitizer (PS), an anti-cancer drug (D), and an 1O2-cleavable linker (L). Upon illumination of the prodrug, 1O2 is generated, which damages the tumor and also releases anticancer drug. The locally released drug could cause spatially broader and temporally sustained damage, killing the surviving cancer cells after the PDT damage. In our previous report, we presented the superior activity of our prodrug of CA4 (combretastatin A-4), Pc-(L-CA4)2, compared to its non-cleavable analog, Pc-(NCL-CA4)2, that produced only PDT effects. Here, we provide clear evidence demonstrating that the released anticancer drug, CA4, indeed damages the surviving cancer cells over and beyond the spatial and temporal limits of 1O2. In the limited light illumination experiment, cells in the entire well were killed due to the effect of released anti-cancer drug, whereas only a partial damage was observed in the pseudo-prodrug treated wells. A time-dependent cell survival study showed more cell death in the prodrug-treated cells due to the sustained damage by the released CA4. Cell cycle analysis and microscopic imaging data demonstrated the typical damage patterns by CA4 in the prodrug treated cells. A time-dependent histological study showed that prodrug-treated tumors lacked mitotic bodies, and the prodrug caused broader and sustained tumor size reduction compared to those seen in the tumors treated with the pseudo-prodrug. This data consistently support that the released CA4 overcomes the spatiotemporal limitations of 1O2, providing far superior antitumor effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号