首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid and accurate assembly of the ribosomal subunits, which are responsible for protein synthesis, is required to sustain cell growth. Our best understanding of the interaction of 30S ribosomal subunit components (16S ribosomal RNA [rRNA] and 20 ribosomal proteins [r-proteins]) comes from in vitro work using Escherichia coli ribosomal components. However, detailed information regarding the essential elements involved in the assembly of 30S subunits still remains elusive. Here, we defined a set of rRNA nucleotides that are critical for the assembly of the small ribosomal subunit in E. coli. Using an RNA modification interference approach, we identified 54 nucleotides in 16S rRNA whose modification prevents the formation of a functional small ribosomal subunit. The majority of these nucleotides are located in the head and interdomain junction of the 30S subunit, suggesting that these regions are critical for small subunit assembly. In vivo analysis of specific identified sites, using engineered mutations in 16S rRNA, revealed defective protein synthesis capability, aberrant polysome profiles, and abnormal 16S rRNA processing, indicating the importance of these residues in vivo. These studies reveal that specific segments of 16S rRNA are more critical for small subunit assembly than others, and suggest a hierarchy of importance.  相似文献   

2.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

3.
Era is an essential G-protein in Escherichia coli identified originally as a homologue protein to Ras (E. coli Ras-like protein). It binds to GTP/GDP and contains a low intrinsic GTPase activity. Its function remains elusive, although it has been suggested that Era is associated with the cytoplasmic membrane, cell division, energy metabolism, and cell-cycle check point. Recently, a cold-sensitive phenotype was found to be suppressed by the overexpression of 16S rRNA methyltransferase, suggesting Era association with the ribosome. Here we demonstrate that Era specifically binds to 16S rRNA and the 30S ribosomal subunit. Both GTP and GDP, but not GMP, inhibit Era binding to ribosomal component. Involvement of Era in protein synthesis is suggested by the fact that Era depletion results in the translation defect both in vitro and in vivo.  相似文献   

4.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

5.
Bacterial genome sequencing has revealed a novel family of P-loop GTPases that are often essential for growth. Accumulating evidence suggests that these proteins are involved in biogenesis of the 30S or 50S ribosomal subunits. YqeH is a member of this Obg/Era GTPase family, with its function remains to be uncovered. Here, we present results showing that YqeH is involved in the 30S subunit biogenesis in Bacillus subtilis. We observed a reduction in the 70S ribosome and accumulation of the free 50S subunit in YqeH-depleted cells. Interestingly, no free 30S subunit accumulation was evident. Consistent with the theory that YqeH is involved in 30S subunit biogenesis, a precursor of 16S rRNA and its degradation products were detected. Additionally, the reduction of free 30S subunit was not observed in Era-depleted cells. YqeH overexpression did not compensate for growth defects in mutants devoid of Era and vice versa. Moreover, in vitro GTPase analyses showed that YqeH possessed high intrinsic GTPase activity. In contrast, Era showed slow GTPase activity, which was enhanced by the 30S ribosomal subunit. Our findings strongly suggest that YqeH and Era function at distinct checkpoints during 30S subunit assembly. B. subtilis yqeH is classified as an essential gene due to the inability of the IPTG-dependent P(spac)-yqeH mutant to grow on LB or PAB agar plates in the absence of IPTG. However, in our experiments, the P(spac)-yqeH mutant grew in PAB liquid medium without IPTG supplementation, albeit at an impaired rate. This finding raises the interesting possibility that YqeH participates in assembly of the 30S ribosomal subunit as well as other cellular functions essential for growth on solid media.  相似文献   

6.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

7.
Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.  相似文献   

8.
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.  相似文献   

9.
Under appropriate conditions, functional Escherichia coli 30S ribosomal subunits assemble in vitro from purified components. However, at low temperatures, assembly stalls, producing an intermediate (RI) that sediments at 21S and is composed of 16S ribosomal RNA (rRNA) and a subset of ribosomal proteins (r-proteins). Incubation of RI at elevated temperatures produces a particle, RI*, of similar composition but different sedimentation coefficient (26S). Once formed, RI* rapidly associates with the remaining r-proteins to produce mature 30S subunits. To understand the nature of this transition from RI to RI*, changes in the reactivity of 16S rRNA between these two states were monitored by chemical modification and primer extension analysis. Evaluation of this data using structural and biochemical information reveals that many changes are r-protein-dependent and some are clustered in functional regions, suggesting that this transition is an important step in functional 30S subunit formation.  相似文献   

10.
YqeH, a circularly permuted GTPase, is conserved among bacteria and eukaryotes including humans. It was shown to be essential for the assembly of small ribosomal (30S) subunit in bacteria. However, whether YqeH interacts with 30S ribosome and how it may participate in 30S assembly are not known. Here, using co-sedimentation experiments, we report that YqeH co-associates with 30S ribosome in the GTP-bound form. In order to probe whether YqeH functions as RNA chaperone in 30S assembly, we assayed for strand dissociation and annealing activity. While YqeH does not exhibit these activities, it binds a non-specific single and double-stranded RNA, which unlike the 30S binding is independent of GTP/GDP binding and does not affect intrinsic GTP hydrolysis rates. Further, S5, a ribosomal protein which participates during the initial stages of 30S assembly, was found to promote GTP hydrolysis and RNA binding activities of YqeH.  相似文献   

11.
Ribosomal protein S15 binds specifically to the central domain of 16 S ribosomal RNA (16 S rRNA) and directs the assembly of four additional proteins to this domain. The central domain of 16 S rRNA along with these five proteins form the platform of the 30 S subunit. Previously, directed hydroxyl radical probing from Fe(II)-S15 in small ribonucleoprotein complexes was used to study assembly of the central domain of 16 S rRNA. Here, this same approach was used to understand the 16 S rRNA environment of Fe(II)-S15 in 30 S subunits and to determine the ribosomal proteins that are involved in forming the mature S15-16 S rRNA environment. We have identified additional sites of Fe(II)-S15-directed cleavage in 30S subunits compared to the binary complex of Fe(II)-S15/16 S rRNA. Along with novel targets in the central domain, sites within the 5' and 3' minor domains are also cleaved. This suggests that during the course of 30S subunit assembly these elements are positioned in the vicinity of S15. Besides the previously determined role for S8, roles for S5, S6+S18, and S16 in altering the 16 S rRNA environment of S15 were established. These studies reveal that ribosomal proteins can alter the assembly of regions of the 30 S subunit from a considerable distance and influence the overall conformation of this ribonucleoprotein particle.  相似文献   

12.
13.
Ribosome binding factor A (RbfA) is a bacterial cold shock response protein, required for an efficient processing of the 5' end of the 16S ribosomal RNA (rRNA) during assembly of the small (30S) ribosomal subunit. Here we present a crystal structure of Thermus thermophilus (Tth) RbfA and a three-dimensional cryo-electron microscopic (EM) map of the Tth 30S*RbfA complex. RbfA binds to the 30S subunit in a position overlapping the binding sites of the A and P site tRNAs, and RbfA's functionally important C terminus extends toward the 5' end of the 16S rRNA. In the presence of RbfA, a portion of the 16S rRNA encompassing helix 44, which is known to be directly involved in mRNA decoding and tRNA binding, is displaced. These results shed light on the role played by RbfA during maturation of the 30S subunit, and also indicate how RbfA provides cells with a translational advantage under conditions of cold shock.  相似文献   

14.
In bacterial ribosomes, the small (30S) ribosomal subunit is composed of 16S rRNA and 21 distinct proteins. Ribosomal protein S15 is of particular interest because it binds primarily to 16S rRNA and is required for assembly of the small subunit and for intersubunit association, thus representing a key element in the assembly of a whole ribosome. Here we report the 2.8 ? resolution crystal structure of the highly conserved S15-rRNA complex. Protein S15 interacts in the minor groove with a G-U/G-C motif and a three-way junction. The latter is constrained by a conserved base triple and stacking interactions, and locked into place by magnesium ions and protein side chains, mainly through interactions with the unique three-dimensional geometry of the backbone. The present structure gives insights into the dual role of S15 in ribosome assembly and translational regulation.  相似文献   

15.
16.
Bacillus subtilis YlqF belongs to the Era/Obg subfamily of small GTP-binding proteins and is essential for bacterial growth. Here we report that YlqF participates in the late step of 50 S ribosomal subunit assembly. YlqF was co-fractionated with the 50 S subunit, depending on the presence of noncleavable GTP analog. Moreover, the GTPase activity of YlqF was stimulated specifically by the 50 S subunit in vitro. Dimethyl sulfate footprinting analysis disclosed that YlqF binds to a unique position in 23 S rRNA. Yeast two-hybrid data revealed interactions between YlqF and the B. subtilis L25 protein (Ctc). The interaction was confirmed by the pull-down assay of the purified proteins. Specifically, YlqF is positioned around the A-site and P-site on the 50 S subunit. Proteome analysis of the abnormal 50 S subunits that accumulated in YlqF-depleted cells showed that L16 and L27 proteins, located near the YlqF-binding domain, are missing. Our results collectively indicate that YlqF will organize the late step of 50 S ribosomal subunit assembly.  相似文献   

17.
V Nowotny  K H Nierhaus 《Biochemistry》1988,27(18):7051-7055
A protein which initiates assembly of ribosomes is defined as a protein which binds to the respective rRNA without cooperativity (i.e., without the help of other proteins) during the onset of assembly and is essential for the formation of active ribosomal subunits. The number of proteins binding without cooperativity was determined by monitoring the reconstitution output of active particles at various inputs of 16S rRNA, in the presence of constant amounts of 30S-derived proteins (TP30): This showed that only two of the proteins of the 30S subunit are assembly-initiator proteins. These two proteins are still present on a LiCl core particle comprising 16S rRNA and 12 proteins (including minor proteins). The 12 proteins were isolated, and a series of reconstitution experiments at various levels of rRNA excess demonstrated that S4 and S7 are the initiator proteins. Pulse-chase experiments performed during the early assembly with 14C- and 3H-labeled TP30 and the determination of the 14C/3H ratio of the individual proteins within the assembled particles revealed a bilobal structure of the 30S assembly: A group of six proteins headed by S4 (namely, S4, S20, S16, S15, S6, and S18) resisted the chasing most efficiently (S4 assembly domain). None of the proteins depending on S7 during assembly were found in this group but rather in a second group with intermediate chasing stability [S7 assembly domain; consisting of S7, S9, (S8), S19, and S3]. A number of proteins could be fully chased during the early assembly and therefore represent "late assembly proteins" (S10, S5, S13, S2, S21, S1). These findings fit well with the 30S assembly map.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.  相似文献   

19.
The order in which proteins bind to 16S rRNA, the assembly map, was determined by Nomura and co-workers in the early 1970s. The assembly map shows the dependencies of binding of successive proteins but fails to address the relationship of these dependencies to the three-dimensional folding of the ribosome. Here, using molecular mechanics techniques, we rationalize the order of protein binding in terms of ribosomal folding. We determined the specific contacts between the ribosomal proteins and 16S rRNA from a crystal structure of the 30S subunit (1FJG). We then used these contacts as restraints in a rigid body Monte-Carlo simulation with reduced-representation models of the RNA and proteins. Proteins were added sequentially to the RNA in the order that they appear in the assembly map. Our results show that proteins nucleate the folding of the head, platform, and body domains, but they do not strongly restrict the orientations of the domains relative to one another. We also examined the contributions of individual proteins to the formation of binding sites for sequential proteins in the assembly process. Binding sites for the primary binding proteins are generally more ordered in the naked RNA than those for other proteins. Furthermore, we examined one pathway in the assembly map and found that the addition of early binding proteins helps to organize the RNA around the binding sites of proteins that bind later. It appears that the order of assembly depends on the degree of pre-organization of each protein's binding site at a given stage of assembly, and the impact that the binding of each protein has on the organization of the remaining unoccupied binding sites.  相似文献   

20.
The 30S subunit is composed of four structural domains, the body, platform, head, and penultimate/ultimate stems. The functional integrity of the 30S subunit is dependent upon appropriate assembly and precise orientation of all four domains. We examined 16S rRNA conformational changes during in vitro assembly using directed hydroxyl radical probing mediated by Fe(II)-derivatized ribosomal protein (r-protein) S8. R-protein S8 binds the central domain of 16S rRNA directly and independently and its iron derivatized substituents have been shown to mediate cleavage in three domains of 16S rRNA, thus making it an ideal probe to monitor multidomain orientation during assembly. Cleavages in minimal ribonucleoprotein (RNP) particles formed with Fe(II)-S8 and 16S rRNA alone were compared with that in the context of the fully assembled subunit. The minimal binding site of S8 at helix 21 exists in a structure similar to that observed in the mature subunit, in the absence of other r-proteins. However, the binding site of S8 at the junction of helices 25-26a, which is transcribed after helix 21, is cleaved with differing intensities in the presence and absence of other r-proteins. Also, assembly of the body helps establish an architecture approximating, but perhaps not identical, to the 30S subunit at helix 12 and the 5' terminus. Moreover, the assembly or orientation of the neck is dependent upon assembly of both the head and the body. Thus, a complex interrelationship is observed between assembly events of independent domains and the incorporation of primary binding proteins during 30S subunit formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号