首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major small nuclear ribonucleoproteins (snRNPs) U1, U2, U5 and U4/U6 participate in the splicing of pre-mRNA. U1, U2, U4 and U5 RNAs share a highly conserved sequence motif PuA(U)nGPu, termed the Sm site, which is normally flanked by two hairpin loops. The Sm site provides the major binding site for the group of common proteins, B', B, D1, D2, D3, E, F and G, which are shared by the spliceosomal snRNPs. We have investigated the ability of common snRNP proteins to recognize the Sm site of snRNA by using ultraviolet light-induced RNA-protein cross-linking within U1 snRNP particles. The U1 snRNP particles, reconstituted in vitro, contained U1 snRNA labelled with 32P. Cross-linking of protein to this U1 snRNA occurred only in the presence of the single-stranded stretch of snRNA that makes up the conserved Sm site. Characterization of the cross-linked protein by one and two-dimensional gel electrophoresis indicated that snRNP protein G had become cross-linked to the U1 snRNA. This was confirmed by specific immunoprecipitation of the cross-linked RNA-protein complex with an anti-G antiserum. The cross-link was located on the U1 snRNA by fingerprint analysis with RNases T1 and A; this demonstrated that the protein G has been cross-linked to the AAU stretch within the 5'-terminal half of the Sm site (AAUUUGUGG). These results suggest that the snRNP protein G may be involved in the direct recognition of the Sm site.  相似文献   

2.
A molecular dynamics simulation of the Sm binding site from human U4 snRNA was undertaken to determine the conformational flexibility of this region and to identify RNA conformations that were important for binding of the Sm proteins. The RNA was fully-solvated (>9,000 water molecules) and charge neutralized by inclusion of potassium ions. A three nanosecond MD simulation was conducted using AMBER with long-range electrostatic forces considered using the particle mesh Ewald summation method. The initial model of the Sm binding site region had the central and 3' stem-loops that flanked the Sm site co-axial with one another, and with the single-stranded Sm binding site region ([I] conformation). During the course of the trajectory, the axes of the 3' stem-loop, and later the central stem-loop, became roughly orthogonal from their original anti-parallel orientation. As these conformational changes occurred, the snRNA adopted first an [L] conformation, and finally a [U] conformation. The [U] conformation was more stable than either the [I] or [L] conformations, and persisted for the final 1 ns of the trajectory. Analysis of the structure resulting from the MD simulations revealed the bulged nucleotide, U114, and the mismatched Ag91-G110 base pair provided distinctive structural features that may enhance Sm protein binding. Based on the results of the MD simulation and the available experimental data, we proposed a mechanism for the binding of the Sm protein sub-complexes to the snRNA. In this model, the D1/D2 and E/F/G Sm protein sub-complexes first bind the snRNA in the [U] conformation, followed by conformational re-arrangement to the [I] conformation and binding of the D3/B Sm protein sub-complex.  相似文献   

3.
The Sm binding sites of different spliceosomal U small nuclear RNAs (snRNAs), the RNA structural elements required for interaction with common snRNP proteins, have been considered to be similar or identical. Here we show that this is not the case. Instead, structural and sequence features unique to U1 or U5 snRNAs that contribute to common protein binding are identified. The determinants of Sm protein binding in both RNAs are complex, consisting in U5 of minimally two and in U1 of minimally four separate structural elements. Even the most conserved features of the two RNAs, single-stranded regions whose generalized sequence is PuA(U)nGPu, are not functionally interchangeable in protein binding. At least one of the newly defined RNA elements functions in assembly with the common proteins, but is not required for their stable binding thereafter. U1, but not U5, snRNP requires a trimethyl guanosine cap structure for its transport to the nucleus. This is not a consequence of the differences in common snRNP binding to the two RNAs, but is due to structural features of U1 RNA that do not contribute to Sm protein binding.  相似文献   

4.
The 5' exon donor in nematode trans-splicing, the SL RNA, is a small (approximately 100 nt) RNA that resembles cis-spliceosomal U snRNAs. Extensive analyses of the RNA sequence requirements for SL RNA function have revealed four essential elements, the core Sm binding site, three nucleotides immediately downstream of this site, a region of Stem-loop II, and a 5' splice site. Although these elements are necessary and sufficient for SL RNA function in vitro, their respective roles in promoting SL RNA activity have not been elucidated. Furthermore, although it has been shown that assembly of the SL RNA into an Sm RNP is a prerequisite for function, the protein composition of the SL RNP has not been determined. Here, we have used oligoribonucleotide affinity to purify the SL RNP and find that it contains core Sm proteins as well as four specific proteins (175, 40, 30, and 28 kDa). Using in vitro assembly assays; we show that association of the 175- and 30-kDa SL-specific proteins correlates with SL RNP function in trans-splicing. Binding of these proteins depends upon the sequence of the core Sm binding site; SL RNAs containing the U1 snRNA Sm binding site assemble into Sm RNPs that contain core, but not SL-specific proteins. Furthermore, mutational and thiophosphate interference approaches reveal that both the primary nucleotide sequence and a specific phosphate oxygen within a segment of Stemloop II of the SL RNA are required for function. Finally, mutational activation of an unusual cryptic 5' splice site within the SL sequence itself suggests that U5 snRNA may play a primary role in selecting and specifying the 5' splice site in SL addition trans-splicing.  相似文献   

5.
6.
Abstract

A molecular dynamics simulation of the Sm binding site from human U4 snRNA was undertaken to determine the conformational flexibility of this region and to identify RNA conformations that were important for binding of the Sm proteins. The RNA was fully-solvated (>9,000 water molecules) and charge neutralized by inclusion of potassium ions. A three nanosecond MD simulation was conducted using AMBER with long-range electrostatic forces considered using the particle mesh Ewald summation method. The initial model of the Sm binding site region had the central and 3′ stem-loops that flanked the Sm site co-axial with one another, and with the single-stranded Sm binding site region ([I] conformation). During the course of the trajectory, the axes of the 3′ stem-loop, and later the central stem-loop, became roughly orthogonal from their original anti-parallel orientation. As these conformational changes occurred, the snRNA adopted first an [L] conformation, and finally a [U] conformation. The [U] conformation was more stable than either the [I] or [L] conformations, and persisted for the final 1 ns of the trajectory. Analysis of the structure resulting from the MD simulations revealed the bulged nucleotide, U114, and the mismatched A91-G110 base pair provided distinctive structural features that may enhance Sm protein binding. Based on the results of the MD simulation and the available experimental data, we proposed a mechanism for the binding of the Sm protein sub-complexes to the snRNA. In this model, the D1/D2 and E/F/G Sm protein sub-complexes first bind the snRNA in the [U] conformation, followed by conformational re-arrangement to the [I] conformation and binding of the D3/B Sm protein sub-complex.  相似文献   

7.
To serve in its function as an assembly machine for spliceosomal small nuclear ribonucleoprotein particles (snRNPs), the survival of motor neurons (SMN) protein complex binds directly to the Sm proteins and the U snRNAs. A specific domain unique to U1 snRNA, stem-loop 1 (SL1), is required for SMN complex binding and U1 snRNP Sm core assembly. Here, we show that each of the major spliceosomal U snRNAs (U2, U4, and U5), as well as the minor splicing pathway U11 snRNA, contains a domain to which the SMN complex binds directly and with remarkable affinity (low nanomolar concentration). The SMN-binding domains of the U snRNAs do not have any significant nucleotide sequence similarity yet they compete for binding to the SMN complex in a manner that suggests the presence of at least two binding sites. Furthermore, the SMN complex-binding domain and the Sm site are both necessary and sufficient for Sm core assembly and their relative positions are critical for snRNP assembly. These findings indicate that the SMN complex stringently scrutinizes RNAs for specific structural features that are not obvious from the sequence of the RNAs but are required for their identification as bona fide snRNAs. It is likely that this surveillance capacity of the SMN complex ensures assembly of Sm cores on the correct RNAs only and prevents illicit, potentially deleterious, assembly of Sm cores on random RNAs.  相似文献   

8.
In eukaryotes the seven Sm core proteins bind to U1, U2, U4, and U5 snRNAs. In Trypanosoma brucei, Sm proteins have been implicated in binding both spliced leader (SL) and U snRNAs. In this study, we examined the function of these Sm proteins using RNAi silencing and protein purification. RNAi silencing of each of the seven Sm genes resulted in accumulation of SL RNA as well as reduction of several U snRNAs. Interestingly, U2 was unaffected by the loss of SmB, and both U2 and U4 snRNAs were unaffected by the loss of SmD3, suggesting that these snRNAs are not bound by the heptameric Sm complex that binds to U1, U5, and SL RNA. RNAi silencing and protein purification showed that U2 and U4 snRNAs were bound by a unique set of Sm proteins that we termed SSm (specific spliceosomal Sm proteins). This is the first study that identifies specific core Sm proteins that bind only to a subset of spliceosomal snRNAs.  相似文献   

9.
The association of Sm proteins with U small nuclear RNA (snRNA) requires the single-stranded Sm site (PuAU(4-6)GPu) but also is influenced by nonconserved flanking RNA structural elements. Here we demonstrate that a nonameric Sm site RNA oligonucleotide sufficed for sequence-specific assembly of a minimal core ribonucleoprotein (RNP), which contained all seven Sm proteins. The minimal core RNP displayed several conserved biochemical features of native U snRNP core particles, including a similar morphology in electron micrographs. This minimal system allowed us to study in detail the RNA requirements for Sm protein-Sm site interactions as well as the kinetics of core RNP assembly. In addition to the uridine bases, the 2' hydroxyl moieties were important for stable RNP formation, indicating that both the sugar backbone and the bases are intimately involved in RNA-protein interactions. Moreover, our data imply that an initial phase of core RNP assembly is mediated by a high affinity of the Sm proteins for the single-stranded uridine tract but that the presence of the conserved adenosine (PuAU.) is essential to commit the RNP particle to thermodynamic stability. Comparison of intact U4 and U5 snRNAs with the Sm site oligonucleotide in core RNP assembly revealed that the regions flanking the Sm site within the U snRNAs facilitate the kinetics of core RNP assembly by increasing the rate of Sm protein association and by decreasing the activation energy.  相似文献   

10.
In Xenopus oocytes in vitro transcribed mouse U7 RNA is assembled into small nuclear ribonucleoproteins (snRNPs) that are functional in histone RNA 3' processing. If the special Sm binding site of U7 (AAUUUGUCUAG, U7 Sm WT) is converted into the canonical Sm sequence derived from the major snRNAs (AAUUUUUGGAG, U7 Sm OPT) the RNA assembles into a particle which accumulates more efficiently in the nucleus, but which is non-functional. U7 RNA with a heavily mutated Sm binding site (AACGCGUCAUG, U7 Sm MUT) is deficient in nuclear accumulation and function. By UV cross-linking U7 Sm WT RNA can be linked to three proteins, i.e. the common snRNP proteins G and B/B' and an apparently U7-specific protein of 40 kDa. As a result of altering the Sm binding site, U7 Sm OPT RNA cannot be cross-linked to the 40 kDa protein and no cross-links are obtained with U7 Sm MUT RNA. The fact that the Sm site also interacts with at least one U7-specific protein is so far unique to U7 RNA and may provide an explanation for the atypical sequence of this site. All described RNA-protein interactions, including that with the 40 kDa protein, already occur in the cytoplasm. An additional cytoplasmic photoadduct obtained with U7 Sm WT and U7 Sm OPT, but not U7 Sm MUT, RNAs is indicative of a protein of 60-80 kDa. The m7G cap structure of U7 Sm WT and U7 Sm OPT RNA becomes hypermethylated. However, the 3mG cap enhances, but is not required for, nuclear accumulation. Finally, U7 Sm WT RNA is functional in histone RNA processing even when bearing an ApppG cap.  相似文献   

11.
J Hamm  N A Dathan  D Scherly    I W Mattaj 《The EMBO journal》1990,9(4):1237-1244
Domains of U1 snRNA which are functionally important have been identified using a splicing complementation assay in Xenopus oocytes. Mutations in, and deletions of, all three of the hairpin loop structures near the 5' end of the RNA are strongly deleterious. Similarly, mutation of the Sm binding site abolishes complementation activity. Analysis of the protein binding properties of the mutant U1 snRNAs reveals that three of the functionally important domains, the first two hairpin loops and the Sm binding site, are required for interaction with U1 snRNP proteins. The fourth functionally important domain does not detectably affect snRNP protein binding and is not evolutionarily conserved. All of the deleterious mutations are shown to have similar effects on in vivo splicing complex formation.  相似文献   

12.
13.
Seven Sm proteins, E, F, G, D1, D2, D3 and B/B', assemble in a stepwise manner onto the single-stranded Sm site element (PuAU(4-6)GPu) of the U1, U2, U4 and U5 spliceosomal snRNAs, resulting in a doughnut-shaped core RNP structure. Here we show by UV cross-linking experiments using an Sm site RNA oligonucleotide (AAUUUUUGA) that several Sm proteins contact the Sm site RNA, with the most efficient cross-links observed for the G and B/B' proteins. Site-specific photo-cross-linking revealed that the G and B/B' proteins contact distinct uridines (in the first and third positions, respectively) in a highly position-specific manner. Amino acids involved in contacting the RNA are located at equivalent regions in both proteins, namely in loop L3 of the Sm1 motif, which has been predicted to jut into the hole of the Sm ring. Our results thus provide the first evidence that, within the core snRNP, multiple Sm protein-Sm site RNA contacts occur on the inner surface of the heptameric Sm protein ring.  相似文献   

14.
C H Wu  C Murphy    J G Gall 《RNA (New York, N.Y.)》1996,2(8):811-823
Using cytoplasmic and nuclear injection assays, we show that U7 snRNA constructs are targeted rapidly and specifically to the coiled bodies (spheres) in the germinal vesicle (GV) of the amphibian oocyte, including those coiled bodies attached to the lampbrush chromosomes at the histone gene loci. Because the U7 snRNP is required for removing the 3' end of histone pre-mRNA, we suggest that a major function of coiled bodies is to recruit U7 snRNPs to the histone gene loci, before they associate with the pre-mRNA. Targeting to coiled bodies requires the specific U7 Sm binding site; replacement of the U7 Sm site by that of U2 snRNA reduces this targeting dramatically. No other part of the molecule is required, and the U7 Sm binding site alone is sufficient to direct nuclear import of an unrelated RNA sequence and its specific targeting to coiled bodies. Injected U7 constructs displace the endogenous U7 in the coiled bodies, the amount of injected U7 that ends up in coiled bodies being roughly equal to the amount of endogenous U7 snRNA.  相似文献   

15.
Spinal muscular atrophy (SMA) is a common motor neuron disease that results from mutations in the Survival of Motor Neuron (SMN) gene. The SMN protein plays a crucial role in the assembly of spliceosomal uridine-rich small nuclear ribonucleoprotein (U snRNP) complexes via binding to the spliceosomal Sm core proteins. SMN contains a central Tudor domain that facilitates the SMN-Sm protein interaction. A SMA-causing point mutation (E134K) within the SMN Tudor domain prevents Sm binding. Here, we have determined the three-dimensional structure of the Tudor domain of human SMN. The structure exhibits a conserved negatively charged surface that is shown to interact with the C-terminal Arg and Gly-rich tails of Sm proteins. The E134K mutation does not disrupt the Tudor structure but affects the charge distribution within this binding site. An intriguing structural similarity between the Tudor domain and the Sm proteins suggests the presence of an additional binding interface that resembles that in hetero-oligomeric complexes of Sm proteins. Our data provide a structural basis for a molecular defect underlying SMA.  相似文献   

16.
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.  相似文献   

17.
Seven Sm proteins, termed B/B', D1, D2, D3, E, F, and G, assemble in an ordered manner onto U snRNAs to form the Sm core of the spliceosomal snRNPs U1, U2, U4/U6, and U5. The survival of motor neuron (SMN) protein binds to Sm proteins and mediates in the context of a macromolecular (SMN-) complex the assembly of the Sm core. Binding of SMN to Sm proteins is enhanced by modification of specific arginine residues in the Sm proteins D1 and D3 to symmetrical dimethylarginines (sDMAs), suggesting that assembly might be regulated at the posttranslational level. Here we provide evidence that the previously described pICln-complex, consisting of Sm proteins, the methyltransferase PRMT5, pICln, and two novel factors, catalyzes the sDMA modification of Sm proteins. In vitro studies further revealed that the pICln complex inhibits the spontaneous assembly of Sm proteins onto a U snRNA. This effect is mediated by pICln via its binding to the Sm fold of Sm proteins, thereby preventing specific interactions between Sm proteins required for the formation of the Sm core. Our data suggest that the pICln complex regulates an early step in the assembly of U snRNPs, possibly the transfer of Sm proteins to the SMN-complex.  相似文献   

18.
19.
Nucleotide analog interference mapping (NAIM) is a powerful method for identifying RNA functional groups involved in protein-RNA interactions. We examined particles assembled on modified U1 small nuclear RNAs (snRNAs) in vitro and detected two categories of interferences. The first class affects the stability of two higher-order complexes and comprises changes in two adenosines, A65 and A70, in the loop region previously identified as the binding site for the U1 small nuclear ribonucleoprotein (snRNP)-specific U1A protein. Addition of an exocyclic amine to position 2 of A65 interferes strongly with protein binding, whereas removal or modification of the exocyclic amine at position 6 makes little difference. Modifications of A70 exhibit the opposite effects: Additions at position 2 are permitted, but modification of the exocyclic amine at position 6 significantly inhibits protein binding. These interactions, critical for U1A-U1 snRNA recognition in the context of in vitro snRNP assembly, are consistent with previous structural studies of the isolated protein with the RNA hairpin containing the U1A binding site. The second category of interferences affects all partially assembled U1-protein complexes by decreasing the stability of Sm core protein associations. Interestingly, most strong interferences occur at phosphates in the terminal stem-loop region of U1, rather than in the Sm binding site. These data argue that interactions with the phosphate backbone of the terminal stem loop are essential for the stable association of Sm core proteins with the U1 snRNA. We suggest that the stem loop of all Sm snRNAs may act as a clamp to hold the ring of Sm proteins in place.  相似文献   

20.
Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins   总被引:90,自引:0,他引:90  
I W Mattaj  E M De Robertis 《Cell》1985,40(1):111-118
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号