首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LOO  E. N. VAN 《Annals of botany》1992,70(6):511-518
Tillering and growth parameters of perennial ryegrass cultivarsWendy (diploid) and Condesa (tetraploid) were determined ina glasshouse experiment using hydroponics at low (–1·3MPa) and normal water potential (0 MPa). At –1·3MPa, leaf extension rate was reduced by 36%. Final plant tillernumber was 20% lower at –1·3 MPa because of a 12%reduction in the leaf appearance rate in the first weeks afterthe start of the treatments. Site filling, the relative increasein tiller number per leaf appearance interval, was high (0.61)-butstill lower than theoretically possible-and was only slightlyaffected by water potential. Site filling was shown to be strictlyrelated to the number of inhibited plus unemerged tiller buds.Dry matter production was 64% lower at –1·3 MPa.Relative growth rate (RGR) was, on average, 17% lower at –1·3MPa, but the reduction was greater just after the treatmentsstarted. Also, net assimilation rate (NAR) was reduced moreby low water potential just after the start of the treatments.Specific leaf area (SLA) was 13 % lower at –1·3MPa for Wendy, but not significantly reduced for Condesa. Contraryto expectations based on the theory of the functional balancebetween root and shoot, leaf weight ratio was slightly higherat –1·3 MPa. From comparison of the results ofthis study with published data, it is concluded that effectsof drought in the field on tillering cannot be attributed onlyto low water potential. Lolium perenne L., perennial ryegrass, tillering, site filling, leaf appearance, leaf extension, growth analysis, water potential  相似文献   

2.
The growth rate of hydroponically grown wheat roots was reducedby mannitol solutions of various osmotic pressures. For example,following 24 h exposure to 0·96 MPa mannitol root elongationwas reduced from 1· mm h–1 to 0·1 mm h–1 Mature cell length was reduced from 290 µm in unstressedroots to 100 µm in 0·96 MPa mannitol. This indicatesa reduction in cell production rate from about 4 per h in theunstressed roots to 1 per h in the highest stress treatment. The growing zone extended over the apical 4·5 mm in unstressedroots but became shorter as growth ceased in the proximal regionsat higher levels of osmotic stress. The turgor pressure along the apical 5·0 mm of unstressedroots was between 0·5 and 0·6 MPa but declinedto 0·41 MPa over the next 50 mm. Following 24 h in 0·48(200 mol m–3) or 0·72 MPa (300 mol m) mannitol,turgor along the apical 50 mm was indistinguishable from thatof unstressed roots but turgor declined more steeply in theregion 5·10 mm from the tip. At the highest level ofstress (0·96 MPa or 400 mol m–3 mannitol) turgordeclined steeply within the apical 20 mm. Key words: Growth, turgor pressure, wall rheology, osmotic stress, osmotic adjustment  相似文献   

3.
The present study deals with structure and function of fourareas of Himalayan chir pine forest. Tree layer was monospecificon all sites with varied density and basal cover in the rangeof 540–1630 individuals per ha and 25·0–47·2m2ha–1, respectively. Shrubs having low density were sparselydistributed. All allometric equations relating to biomass ofdifferent components, to circumference at breast height (cbh)were significant, with the exception of that for cone biomass.Total vegetation biomass (115–236 t ha–1) was distributedas 113–283 t ha–1 in trees. 0·56–0·82t ha–1 in shrubs and 1·63–2·57 t ha–1in herbs. Total forest floor biomass including herbaceous litterranged between 9·6 and 13·6 t ha–1. Of thetotal annual litter fall (4·26–7·38 t ha–1),60·3–75·1 per cent was distributed in leaflitter and 24·9–39·7 per cent in wood litter.Turnover rate of tree litter varied from 0·45 to 0·53,whereas rates for shrubs and herbs were assumed to 1. Net primaryproduction of total vegetation ranged between 9·91 and21·2 t ha–1 year–1, of which the contributionof trees, shrubs and herbs was 76·5– 88·1per cent 0·6–1·8 per cent and 11·3–21·5per cent, respectively. A compartment model of dry matter onthe basis of mean data across sites was developed to show drymatter storage and flow of dry matter within the ecosystem. Pinus roxburghii forest, biomass, litter fall, net primary production, compartmental transfer  相似文献   

4.
Stands of groundnut (Arachis hypogaea L.), a C3 legume, weregrown in controlled-environment glasshouses at 28 °C (±5°C)under two levels of atmospheric CO2 (350 ppmv or 700 ppmv) andtwo levels of soil moisture (irrigated weekly or no water from35 d after sowing). Elevated CO2 increased the maximum rate of net photosynthesisby up to 40%, with an increase in conversion coefficient forintercepted radiation of 30% (from 1–66 to 2–16g MJ–1) in well-irrigated conditions, and 94% (from 0–64to 1·24 g MJ–1) on a drying soil profile. In plantswell supplied with water, elevated CO2 increased dry matteraccumulation by 16% (from 13·79 to 16·03 t –1) and pod yield by 25% (from 2·7 to 3·4t ha–1).However, the harvest index (total poddry weight/above-grounddry weight) was unaffected by CO2 treatment. The beneficial effects of elevated CO2 were enhanced under severewater stress, dry matter production increased by 112% (from4·13 to 8·87 t ha–1) and a pod yield of1·34t ha–1 was obtained in elevated CO2, whereascomparable plotsat 350 ppmv CO2 only yielded 0·22 t ha-1.There was a corresponding decrease in harvest index from 0·15to 0·05. Following the withholding of irrigation, plants growing on astored soil water profile in elevated CO2 could maintain significantlyless negative leaf water potentials (P<0·01) for theremainder of the season than comparable plants grown in ambientCO2, allowing prolonged plant activity during drought. In plants which were well supplied with water, allocation ofdry matter between leaves, stems, roots, and pods was similarin both CO2 treatments. On a drying soil profile, allocationin plants grown in 350 ppmv CO2 changed in favour of root developmentfar earlier in the season than plants grown at 700 ppmv CO2,indicating that severe waterstress was reached earlier at 350ppmv CO2. The primary effects of elevated CO2 on growth and yield of groundnutstands weremediated by an increase in the conversion coefficientfor intercepted radiation and the prolonged maintenance of higherleaf water potentials during increasing drought stress. Key words: Arachis hypogaea, elevated CO2, water stress, dry matter production  相似文献   

5.
Water and Seed Survival   总被引:18,自引:1,他引:17  
Between about –350 and –14 MPa the rate of lossof viability in orthodox seeds is a positive function of waterpotential. The relative effect of water potential has been analysedin an oily seed (lettuce) and a non-oily seed (barley) and foundto be more or less identical. The lower limit for the relationin various species coincides with a seed moisture content (wetbasis) between about 2 and 6%. Below this level there is littleor no improvement in longevity with reduction in moisture content.The upper limit coincides with moisture contents of between15 and 28%, depending on whether the seeds are oily or non-oily.A water potential of about –14 MPa is the threshold forrespiration which increases more-or-less linearly with increasein water potential above this level. Above this threshold, andproviding oxygen is available to sustain respiration, seed longevityincreases with increase in water potential except that, unlessthe seeds are dormant, germination may be initiated at a waterpotential of about –1·5 to –0·5 MPa.In the absence of oxygen there may be a slight further declinein longevity with increase in water potential above –14MPa before longevity reaches a minimum value Since they cannot be dried very much without immediate lossof viability, recalcitrant seeds survive longest in the presenceof oxygen at maximum water potential commensurate with preventinggermination. The threshold water potential for immediate lossof viability has not been determined for most species but itis probable that it is close to the water potential typicalof the permanent wilting point in these plants, say –2MPa Lactuca saliva L., lettuce, Hordeum oulgare L., barley, seed storage, moisture content, relative humidity, water potential, temperature, oxygen  相似文献   

6.
Melvin T. Tyree  Shudong Yang 《Planta》1990,182(3):420-426
Water-storage capacity was measured inThuja occidentalis L.,Tsuga canadensis (L.) Carr., andAcer saccharum Marsh. during the dehydration of stem segments 1.5–2.5 cm in diameter. Stem water potential was measured with a temperature-corrected stem hygrometer and cavitations were detected acoustically. Water loss was measured by weight change. Dehydration isotherms consistently displayed three phases. The first phase, from water potential (Ψ) 0 to about −0.2 MPa, had a high capacitance (C>0.4kg water lost· (1 of tissue)−1· MPa−1) and we have attributed this high C to capillary water as defined by Zimmermann (1983, Xylem structure and the ascent of sap, Springer-Verlag). The second phase from Ψ=−0.5 to about −2.0 had the lowest C values (<0.02 kg·l−1·MPa−1) and was accompanied by a few cavitation events. This phase may have been a transition zone between capillary storage and water released by cavitation events as well as water drawn from living cells of the bark. The third phase also had a high C (about 0.07–0.22kg·l−1·MPa−1) and was associated with many cavitation events while Ψ declined below about −2.5 MPa; we presume the high capacitance was the consequence of water released by cavitation events. We discuss the ecological adaptive advantage of these three phases of water-storage in trees. In moist environments, water withdrawn from capillary storage may be an important fraction of transpiration, but may be of little adaptive advantage. For most of the growth season trees draw mainly on elastic storage, but stem elastic storage is less than leaf elastic storage and therefore unlikely to be important. In very dry environments, water relased by cavitation events might be important to the short-term survival of trees.  相似文献   

7.
NOBEL  PARK S.; CUI  MUYI 《Annals of botany》1992,70(6):485-491
Attached 2-month-old roots of the succulent plant, Opuntia ficus-indica,shrank 0.4% radially during periods of maximal transpirationunder wet conditions. In contrast, reversible decreases in diameterof nearly 20% occurred for these roots as their ambient waterpotential () in the vapour phase decreased from –0.01to –10 MPa over 8 d, the changes being slightly more rapidat 40 °C than at 10 °C. Such substantial diameter changesbecame progressively less with root age, from a 43% decreasein diameter at 3 weeks to a 6% decrease at 12 months Root shrinkagewas slight when was decreased from –0.01 to –0.3MPa, the latter being similar to the root water potential.As was further decreased from –0.3 to –10 MPa,water movement out of cortical cells caused considerable rootshrinkage. The root hydraulic conductivity (Lp) decreased only30 to 60% for a change in from –0.01 to –10 MPacompared with a decrease of over 106-fold for the soil hydraulicconductivity over this range. The overall conductivity of thesoil, the root-soil air gap, and the root was predicted to bedominated by Lp for soil above –0.3 MPa. As simulatedsoil decreased below –0.3 MPa, the root-soil air gap initiallybecame the primary limiter of water loss from the roots. Below–5 MPa for 1-month-old roots and below –2 MPa for12-month-old roots, the soil became the main limiter of waterloss. Thus, water uptake from wet soils apparently was mainlycontrolled by root properties Water loss to drying soils wascontrolled by the development of a root-soil air gap aroundshrinking roots during the initial phase of soil drying andby the reduction of the soil hydraulic conductivity at evenlower soil. Root diameter, root hydraulic conductivity, root-soil air gap, soil hydraulic conductivity  相似文献   

8.
Thermal and Water Relations of Roots of Desert Succulents   总被引:6,自引:0,他引:6  
Two succulent perennials from the Sonoran Desert, Agave desertiEngelm. and Ferocactus acanthodes (Lem.) Britton and Rose, loselittle water through their roots during drought, yet respondrapidly to light rainfall. Their roots tend to be shallow, althoughabsent from the upper 20 mm or so of the soil. During 12–15d after a rainfall, new root production increased total rootlength by 47 per cent to 740 m for A. deserti and by 27 percent to 230 m for F. acanthodes; root dry weight then averagedonly 15 per cent of shoot dry weight. The annual carbon allocatedto dry weight of new roots required 11 per cent of shoot carbondioxide uptake for A. deserti and 19 per cent for F. acanthodes.Elongation of new roots was greatest near a soil temperatureof 30°C, and lethal temperature extremes (causing a 50 percent decrease in root parenchyma cells taking up stain) were56°C and -7°C. Soil temperatures annually exceeded themeasured tolerance to high temperature at depths less than 20mm, probably explaining the lack of roots in this zone. Attached roots immersed in solutions with osmotic potentialsabove -2·6 MPa could produce new lateral roots, with50 per cent of maximum elongation occurring near -1·4MPa for both species. Non-droughted roots lost water when immersedin solutions with osmotic potentials below -0·8 MPa,and root hydraulic conductance decreased markedly below about-1·2 MPa. Pressure-volume curves indicated that, fora given change in water potential, non-droughted roots lostthree to five times more water than droughted roots, non-droughtedleaves, or non-droughted stems. Hence, such roots, which couldbe produced in response to a rainfall, will lose the most tissuewater with the onset of drought, the resulting shrinkage beingaccompanied by reduced root hydraulic conductance, less contactwith drying soil, and less water loss from the plant to thesoil. Agave deserti, Ferocactus acanthodes, roots, soil, temperature, water stress, drought, Crassulacean acid metabolism, succulents  相似文献   

9.
Sucrose Metabolism in Bean Plants Under Water Deficit   总被引:10,自引:3,他引:7  
The effects of water stress on sucrose metabolism were evaluatedin bean plants of Tacarigua variety grown for 25 d. Decreasingwater potential and relative water content were observed. Waterstress effects resulted in a decrease of sucrose phosphate synthase(SPS) in both total (substrate saturating conditions) and Pi-insensitive(substrate limiting conditions plus inorganic phosphate) activities.The SPS Pi-insensitive activity was lower than the total SPSactivity, but the decrease in activity induced by water deficitwas relatively lower in the Pi-insensitive; however the activationstate increased during the water deficit period. An increasein sucrose synthase activity increased the activities of bothneutral and acid invertases at moderate water stress (–0·8MPa) and decreased activities at severe water stress(–1·45 MPa). The activity values of neutral invertasewere lower than those for the acid invertase. The starch/sucroseratio decreased and the ratio of total glucose/total fructoseincreased. These results indicate a relevant physiological roleof SPS in bean plants under water stress. Key words: Acid invertase, sucrose phosphate synthase, sucrose synthase  相似文献   

10.
Measurements of gas-exchange, leaf water potential and the leafdiffusive conductance of the abaxial leaf surface of six cassavacultivars, M Mex 59, M Ven 218, M Col 1684, M Col 72, M Col22, and M Col 638, were made at 48 h intervals and between 1200–1500h, on potted plants, grown outdoors during a 58 d period ofwithdrawal of irrigation. Rates of net-photosynthesis of about28 mg CO2 dm–2 h –1 were reduced to zero withinthe first 5 d of the drying cycle, despite the small differencesin leaf water potential of 0.15 MPa. Water shortage also causeda reduction in mean conductance to < 1.0 mm s–1 atwhich level the control of transpiration maintained leaf waterpotential at > —1.6 MPa. Cultivar differences in theresponse of net-photosynthesis and leaf diffusive conductanceto water shortage were seen within 2 d of the dry cycle andthe leaf water potential was commonly 0.15 MPa lower than inthe wet controls. The most vigorous cultivars (M Mex 59, M Ven218 and M Col 1684) reduced their rates of net-photosynthesisto zero by day 5 of the dry cycle when the soil water contentwas depleted by 65%. Less vigorous cultivars (M Col 72, M Col22 and M Col 638) reduced their rates of net-photosynthesisto zero by day 30, when the soil water content was depletedby 75%. Measurements are also reported of the leaf productionper apex and leaf extension for leaves produced during the dryingcycle. Key words: Cassava (Manihot esculenta Crantz), Gas-exchange, Leaf diffusive conductance, Water deficits  相似文献   

11.
Water relations and anatomy of a casual epiphyte were studiedat La Carbonera, a tropical cloud forest. Anthurium bredemeyerigrowing as an epiphyte and in its terrestrial form were studiedto find differences due to their different habits. Both formsmaintained relatively high leaf conductances (0·12 to0·15 mol m2 s1) when leaf ater potential was relativelyhigh (above – 0·5 MPa). A lowering of the leafwater potential (below – 0·5 MPa) during the dryseason, significantly affected leaf conductances in both terrestrialand epiphytic forms, the latter one to a greater degree. Interms of anatomy, a reduction in stomatal density was observedin the epiphyte, although no other differences were observed.The results show how the epiphyte was affected to a greaterdegree by a decrease in water availability during the dry seasoncompared to the terrestrial form. Key words: Anthurium bredemeyeri, epiphyte, water relations, anatomy  相似文献   

12.
Background and Aims Summer dormancy in perennial grasseshas been studied inadequately, despite its potential to enhanceplant survival and persistence in Mediterranean areas. The aimof the present work was to characterize summer dormancy anddehydration tolerance in two cultivars of Dactylis glomerata(dormant ‘Kasbah’, non-dormant ‘Oasis’)and their hybrid using physiological indicators associated withthese traits. • Methods Dehydration tolerance was assessed in a glasshouseexperiment, while seasonal metabolic changes which produce putativeprotectants for drought, such as carbohydrates and dehydrinsthat might be associated with summer dormancy, were analysedin the field. • Key Results The genotypes differed in their ability tosurvive increasing soil water deficit: lethal soil water potential(s) was –3·4 MPa for ‘Kasbah’ (althoughnon-dormant), –1·3 MPa for ‘Oasis’,and –1·6 MPa for their hybrid. In contrast, lethalwater content of apices was similar for all genotypes (approx.0·45 g H2O g d. wt–1), and hence the greater survivalof ‘Kasbah’ can be ascribed to better drought avoidancerather than dehydration tolerance. In autumn-sown plants, ‘Kasbah’had greatest dormancy, the hybrid was intermediate and ‘Oasis’had none. The more dormant the genotype, the lower the metabolicactivity during summer, and the earlier the activity declinedin spring. Decreased monosaccharide content was an early indicatorof dormancy induction. Accumulation of dehydrins did not correlatewith stress tolerance, but dehydrin content was a function ofthe water status of the tissues, irrespective of the soil moisture.A protein of approx. 55 kDa occurred in leaf bases of the mostdormant cultivar even in winter. • Conclusions Drought avoidance and summer dormancy arecorrelated but can be independently expressed. These traitsare heritable, allowing selection in breeding programmes.  相似文献   

13.
An investigation has been made into the growth regulators presentin ethanol extracts of the seedling roots of Vicia faba afterseparation on paper partition chromatograms, using segmentsof Avena coleoptiles and mesocotyls and of Pisum sativum.rootsas biological assay material. Acetonitrile purification shows the presence of at least threeauxins running in isobutanol: methanol: water, at Rfs of 0–0·25,0·4–0·6, and 0·65–0·95;the latter may represent two different auxins. A similar, butclearer, picture is shown by the ether-soluble acid fraction.Here an auxin at Rf 0–0·25 also stimulates rootgrowth and could be ‘accelerator ’. A second atRf 0–0·25 is an indole compound which inhibitsroot growth and does not seem to be be IAA. A third at Rf 0·8–1·0is also a root-growth inhibitor and gives no indole reaction.The ‘inhibitor ß’ complex was demonstrated(Rf 0·65–0·85) together with a number ofother inhibitors at lower Rf value. The ether-soluble neutral component also contains auxins orauxin precursors. The water-soluble, ether-insoluble fraction contains four readilyinterconvertible substances with auxin properties. They allappear to inhibit root growth and give no indole reaction.  相似文献   

14.
In Datura ferox seeds, the far-red absorbing form of phytochrome(Pfr) induces endosperm softening, larger embryo growthpotential,and germination. We investigated the effect of exposing theseeds to a range of water potentials in the presence of Pfronits induction of these responses. In addition, the escape timeto far-red-light (FR) reversal of the three responses wasdetermined. Low water potential inhibited Pfr action on endosperm softeningand germination in a similar way. In both cases, a 50% reductionin the response to a saturating red-light (R) irradiation wasobserved at a water potential of c. —0·5 MPa andtherewas very good correlation between the percentage numberof seeds with softened endosperm at 45 h after R and germinationat 72 h after R (R2=0·95). In contrast, the effect ofdecreasing the external water potential on Pfr induction ofa larger embryogrowth potential was more complex. Moderate decreasesin water potential (—0·3 to —0·5 MPa)enhanced Pfr action and thegrowth potential of the embryos waslarger (20—25%) than the water controls; water potentialsbelow —0·7 MPa inhibited the Pfr stimulus. The escape time to FR reversal of the R effect was shorter forthe increase in embryo growth potential than for endospermsoftening.Twenty-four h after R, the embryo response had escaped in morethan 80% of the population whereas endospermsoftening and germinationwere susceptible to FR inhibition in 100% of the seeds. These results indicate that in D. ferox seeds the increase inembryo growth potential is not sufficient for germination andthatendosperm softening is a necessary condition. Key words: Germination, dormancy, phytochrome, endosperm softening, water potential  相似文献   

15.
The present study deals with structure and functioning of threeareas of Himalayan oak forest. Low- and mid-altitude oaks, namelyQuercus leucotrichophora, and Quercus floribunda, form predominantevergreen forests in Central and Western Himalaya. The totaltree basal cover ranged between 33·89 m2 ha–1 (Q.floribunda site) to 36·83 m2 ha–1 (Q. leucotrichophorasite). The density ranged between 570 and 760 individuals ha–1.Allometric equations relating biomass of different tree componentsto GBH (girth at breast height) were significant with the exceptionof leaf biomass in Q. leucotrichophora and Rhododendron arboreum.Total vegetation biomass (29·40–467·0 tha–1) was distributed as 377·1 t ha–1 intrees, 5·40 t ha–1 in shrubs and 1·23 tha–1 in herbs. Total forest floor biomass ranged between4·6 and 6·2 t ha–1. Of the total annuallitter fall (4·7–4·8 t ha–1), 77·5% was contributed by leaf litter, 17·8 % by wood litterand 4·7 % by miscellaneous litter. Turnover rate of treelitter varied from 0·66 to 0·70. Net primary productionof total vegetation ranged between 15·9 and 20·6t ha–1 yr–1, of which the contribution of trees,shrubs and herbs was 81·2 %, 8·6 % and 10·2%, respectively. A compartment model of dry matter on the basisof mean data across sites was developed to show dry matter storageand flow of dry matter within the system. Quercus leucotrichophora forest, Q. floribunda forest, Q. lanuginosa forest, biomass, litter fall, net primary production, compartmental transfer  相似文献   

16.
The biomass and net primary productivity (NPP) of 2- to 8-year-oldplantations of Eucalyptus tereticornis Sm. (= E. hybrid) growingin the tarai (a level area of superabundant water) region ofCentral Himalaya were estimated. Allometric equations for allthe above-ground and below-ground components of trees and shrubswere developed for each stand. Understorey, forest floor biomassand litter fall were also estimated from stands. Shrubs appearedfirst at 5-year-old plantation. The biomass of vegetation, forestfloor littermass, tree litter fall and net primary productivity(NPP) of trees and shrubs increased with the increase in plantationage, whereas herb biomass and NPP significantly (P < 0·01)decreased with the increase in plantation age. The total plantationbiomass increased from 7·7 t ha–1 in the 2-year-oldto 126·7 t ha–1 in the 8-year-old plantation andNPP from 8·6 t ha–1 year–1 in the 2-year-oldto 23·4 t ha–1 year–1 in the 8-year-old plantation.The biomass accumulation ratio ranged from 0·81 to 5·93. Eucalyptus tereticornis Sm, plantation, biomass, forest floor, litter fall, net primary productivity, biomass accumulation ratio  相似文献   

17.
The diffusive conductance (Cs) of rice (Oryza sativa cvs Jaya and Bala) leaves was measured during a soil drying cycle from flooding to decreasing soil water potential (φs) in a controlled-environment chamber. Plants were grown continuously under 5 cm submergence up to 69 days after transplanting and thereafter were subjected to gradual soil drying for a period of 17 days in the vegetative growth stage. In both the cultivars, the values of Cs were generally more on adaxial than abaxial leaf surfaces. This response of stomata during the period of soil drying was independent of leaf rolling. Further, the slopes of the curves (Cs, vs φs) also did not differ significantly (P= 0·05). The total Cs, of both cultivars during flooding was almost equal (0·60 cm s-1) but at the end of the soil drying cycle, the values of total Cs, were 0·11 cm s-l at ψs of -1·3 MPa and 0·08 cm s-1 at ψs, of -0·8 MPa in cvs Jaya and Bala, respectively. For total Cs, slopes differed significantly (P = 0·05). A close relationship between total Cs, and ψs, in both cultivars (Cs, = 0·58-0·40 ψs, for cv. Jaya and Cs= 0·46-0·56 ψs, for cv. Bala) indicated that stomata were sensitive to increasing soil water deficit.  相似文献   

18.
Zhang, J. and Davies, W. J. 1987. Increased synthesis of ABAin partially dehydrated root tips and ABA transport from rootsto leaves.—J. exp. Bot. 38: 2015–2023. Isolated root tips of pea (Pisum sativum L. cv. Feltham First)and Commelina communis L. were air-dried until they lost between10% and 40% of their fresh weight, followed by a period of incubationat these reduced water contents. These treatments resulted inincreased ABA production, suggesting that root tips of bothspecies have the capacity to synthesize ABA in increased amountswhen water deficits develop in the root. The ABA concentrationin pea roots increased linearly as turgors fell below about0·15 M Pa and relative water contents (R WC) fell below90%. Commelina roots produced more ABA when RWC fell below asimilar value but the threshold turgor for increased ABA productionin Commelina roots was around 0·30 MPa. Roots of intact plants loaded with ABA as a result of incubationin solutions of varying concentrations provided ABA to leaveswhich resulted in increased ABA concentrations in the leaveswhen these were assayed several hours later. This occurred whenthese roots were not contributing substantially to transpirationalflux. Leaves on shoots that were enclosed and darkened and thereforenot transpiring, did not accumulate ABA from ‘loaded’roots. A role for root-sourced ABA in root-to-shoot communication ofthe effects of soil drying is discussed. Key words: ABA, roots, water relations  相似文献   

19.
Measurements are reported of ultrasonic acoustic emissions (AEs) measured from sapwood samples of Thuja occidentalis L. and Tsuga canadensis (L.) Carr. during air dehydration. The measurements were undertaken to test the following three hypotheses: (a) Each cavitation event produces one ultrasonic AE. (b) Large tracheids are more likely to cavitate than small tracheids. (c) When stem water potentials are >−0.4 MPa, a significant fraction of the water content of sapwood is held by `capillary forces.' The last two hypotheses were recently discussed at length by M. H. Zimmermann. Experimental evidence consistent with all three hypotheses was obtained. The evidence for each hypothesis respectively is: (a) the cumulative number of AEs nearly equals the number of tracheids in small samples; (b) more water is lost per AE event at the beginning of the dehydration process than at the end, and (c) sapwood samples dehydrated from an initial water potential of 0 MPa lost significantly more water before AEs started than lost by samples dehydrated from an initial water potential of about −0.4 MPa. The extra water held by fully hydrated sapwood samples may have been capillary water as defined by Zimmerman.

We also report an improved method for the measurement of the `intensity' of ultrasonic AEs. Intensity is defined here as the area under the positive spikes of the AE signal (plotted as voltage versus time). This method was applied to produce a frequency histogram of the number of AEs versus intensity. A large fraction of the total number of AEs were of low intensity even in small samples (4 mm diameter by 10 mm length). This suggests that the effective `listening distance' for most AEs was less than 5 to 10 mm.

  相似文献   

20.
Water relations of the mistletoe Amyema fitzgeraldii and itshost Acacia acuminata were studied near Geraldton, Western Australia.Transpiration rates of host and parasite under unstressed winterconditions varied more than 300–fold between day and nightwhile leaf water potential gradients between the partners remainedwithin the range 0·4–0·6 MPa. Plots of transpirationagainst leaf water potential indicated closely similar fluidphase resistances in host and parasite during daytime but divergentbehaviour at night due to an apparently large increase in resistanceof the haustorial junction between the partners. Data for summerand winter studies across a full range of light intensitiesshowed the parasite to transpire, on average, 1·4 timesfaster and to exhibit noticeably lower water use efficienciesthan its host. Experiments following restorative changes atnight in leaf water potentials of host and parasite on detachedhost branches supplied through their cut ends with water indicatedthat the haustorium offered a major resistance to water uptakeby the parasite. Restoration of leaf water potentials by theparasite lagged markedly behind that of the host, especiallyduring winter, leading to a rapid build up in potential gradientbetween partners. A phase of rapid flow into the parasite thenfollowed, presumably motivated by lowering of the haustorialresistance. Reversal of the potential gradient between hostand parasite was recorded in a night-time study involving abagged (non-transpiring) mistletoe attached to a host branchfrozen at the base to prevent further water uptake. Mechanismsare proposed to account for the apparently highly variable natureof the resistance of the haustorium. Key words: Mistletoe, transpiration, haustorial resistance, Amyema fitzgeraldii, Acacia acuminata  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号