首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The progressive loss of colour in the hair of grey horses is controlled by a dominantly inherited allele at the Grey locus (GG). In this study, two paternal Quarter Horse (QH) families segregating for the GG allele were genotyped with a set of 101 microsatellite markers spanning the 31 autosomes and the X chromosome. This genome scan demonstrated linkage of Grey to COR018 (RF=0.02, LOD=12.04) on horse chromosome 25 (ECA25). Further chromosome-specific analysis of seven total QH families confirmed the linkage of Grey to a group of ECA25 markers and the map order of NVHEQ43-(0.24)-UCDEQ405-(0.09)-COR080-(0.05)-GREY-(0.14)-UCDEQ464 was produced. Although G was found to be linked to TXN and COR018 in the chromosome-specific analysis, the data were not sufficiently informative to place either marker on our ECA25 map with significant LODs. Our results excluded the equine tyrosinase related protein 1 (TYRP1) and melanocyte protein 17 (Pmel17) genes as possible candidates for the grey phenotype in horses.  相似文献   

2.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   

3.
4.
马基因组研究进展   总被引:3,自引:0,他引:3  
杨虹  马月辉  李蓓  芒来 《遗传》2010,32(3):211-218
各种生物都具有其独特的遗传信息, 深入了解生物体的形成过程以及各种生命活动都离不开基因组的研究成果。由于在世界范围内马具有良好的健康情况记录和详细的系谱记录, 使得马成为生命科学研究中极具价值的模式动物。尽管起步较晚, 但在过去的几年中, 马基因组图谱经历了前所未有的发展。文章主要对近年来马基因组遗传图谱、物理图谱、基因组比较作图以及功能基因组学等研究进展进行了综述, 这些图谱也正是世界各地研究人员用以探寻与马的各种性状(包括全部的健康状况、抗病性能、生殖生育能力、运动性能以及诸如毛色这样的表型特征等)相关基因的重要工具。相信这些研究成果将为马匹疾病预防、诊断和治疗提供新的思路与方法, 并将为马遗传育种提供更好的选配依据。  相似文献   

5.
The Old Kladruber horses arose in the 17th century as a breed used for ceremonial purposes. Currently, grey and black coat colour varieties exist as two sub-populations with different recent breeding history. As the population underwent historical bottlenecks and intensive inbreeding, loss of genetic variation is considered as the major threat. Therefore, genetic diversity in neutral and non-neutral molecular markers was examined in the current nucleus population. Fifty microsatellites, 13 single nucleotide polymorphisms (SNPs) in immunity-related genes, three mutations in coat colour genes and one major histocompatibility (MHC-DRA) gene were studied for assessing genetic diversity after 15 years of conservation. The results were compared to values obtained in a similar study 13 years ago. The extent of genetic diversity of the current population was comparable to other breeds, despite its small size and isolation. The comparison between 1997 and 2010 did not show differences in the extent of genetic diversity and no loss of allele richness and/or heterozygosity was observed. Genetic differences identified between the black and grey sub-populations observed 13 years ago persisted. Deviations from the Hardy–Weinberg equilibrium found in 19 microsatellite loci and in five SNP loci are probably due to selective breeding. No differences between neutral and immunity-related markers were found. No changes in the frequencies of markers associated with two diseases, melanoma and insect bite hypersensitivity, were observed, due probably to the short interval of time between comparisons. It, thus, seems that, despite its small size, previous bottlenecks and inbreeding, the molecular variation of Old Kladruber horses is comparable to other horse breeds and that the current breeding policy does not compromise genetic variation of this endangered population.  相似文献   

6.
The identification of candidate genes for significant traits is crucial. In this study, we developed and tested effective and systematic methods based on linkage disequilibrium (LD) for the identification of candidate regions for genes with Mendelian inheritance and those associated with complex traits. Our approach entailed the combination of primary screening using pooled DNA samples based on ΔTAC, secondary screening using an individual typing method and tertiary screening using a permutation test based on the differences in the haplotype frequency between two neighbouring microsatellites. This series of methods was evaluated using horse coat colour traits (chestnut/non-chestnut) as a simple Mendelian inheritance model. In addition, the methods were evaluated using a complex trait model constructed by mixing samples from chestnut and non-chestnut horses. Using both models, the methods could detect the expected regions for the horse coat colour trait. The results revealed that LD extends up to several centimorgans in horses, indicating that whole-genome LD screening in horses could be performed systematically and efficiently by combining the above-mentioned methods. Since genetic maps based on microsatellites have been constructed for many other species, the approaches present here could have wide applicability.  相似文献   

7.
The ability of four horses (Equus caballus) to discriminate coloured (three shades of blue, green, red, and yellow) from grey (neutral density) stimuli, produced by back projected lighting filters, was investigated in a two response forced-choice procedure. Pushes of the lever in front of a coloured screen were occasionally reinforced, pushes of the lever in front of a grey screen were never reinforced. Each colour shade was randomly paired with a grey that was brighter, one that was dimmer, and one that approximately matched the colour in terms of brightness. Each horse experienced the colours in a different order, a new colour was started after 85% correct responses over five consecutive sessions or if accuracy showed no trend over sessions. All horses reached the 85% correct with blue versus grey, three horses did so with both yellow and green versus grey. All were above chance with red versus grey but none reached criterion. Further analysis showed the wavelengths of the green stimuli used overlapped with the yellow. The results are consistent with histological and behavioural studies that suggest that horses are dichromatic. They differ from some earlier data in that they indicate horses can discriminate yellow and blue, but that they may have deficiencies in discriminating red and green.  相似文献   

8.
Kit基因对白马被毛褪色的影响   总被引:2,自引:0,他引:2  
Bai DY  Yang LH  Unerhu U  Zhao YP  Zhao QN  Hasigaowa H  Dugarjaviin M 《遗传》2011,33(11):1171-1178
马毛色是品种鉴定和个体识别的重要依据,也是制定育种方案时必须考虑的重要性状之一。因此,研究马被毛褪色已成为当今国际马毛色研究领域的重要内容,试图弄清导致马被毛褪色的真正机理。目前已经发现,许多马种被毛褪色表型个体中3号染色体上的kit基因存在不同的显著突变。研究结果表明马kit基因的正常表达与否与表皮中黑色素细胞及黑色素的形成密切相关,从而控制是否出现褪色表型。然而,研究证明在不同马种间褪色表型个体在该位点上出现的突变存在着较大的种间差异。具有被毛完全褪色表型的马群非常少见,只是偶尔见于有些马种,但在内蒙古锡林郭勒盟西乌珠穆沁旗生存着较大数量的被毛褪色表型个体,被称为蒙古白马。然而,造成其被毛褪色的机理还没有得到证实,有趣的是至今为止在蒙古白马kit基因的21个外显子中还没有发现任何典型突变。因此,文章对近些年国际上对马被毛褪色的分子研究进展做一比较系统的综合叙述,为蒙古白马毛色形成的机理研究奠定基础,为今后的马匹毛色研究及其育种工作提供有价值的参考依据。  相似文献   

9.
The colour locus historically referred to as C in the horse is linked to microsatellites markers on horse chromosome 21. Preliminary results demonstrated linkage of Ccr, thought to be the cream dilution variant of the C locus, to HTG10. An analysis of horse chromosome 21 using additional families confirmed and established a group of markers linked to Ccr. This work also improved the resolution of previously reported linkage maps for this chromosome. Linkage analysis unambiguously produced the map order: SGCV16-(19.1 cM)-HTG10-(3.8 cM)-LEX60/COR73-(1.3 cM)-COR68-(4.5 cM)- Ccr-(11.9 cM)-LEX31. Comparative and synteny data suggested that the horse C locus is not tyrosinase (TYR).  相似文献   

10.
Following the recent development of high-resolution gene maps and generation of several basic tools and resources to use them in analyzing traits that are economically important to horse owners, genome analysis in horses is witnessing a shift towards developing an ability to analyze complex traits. The likelihood of this happening in the very near future is great, mainly because of the recent availability of the whole genome sequence in the horse. The latter has triggered the development of novel tools like SNP-chip and expression arrays that will permit rapid genome-wide analysis. While these tools will be used for a range of multi-factorial disease traits, attempts are underway to develop focused tools that can target reproduction, fertility and sex determination. For this, a catalog of sex and reproduction related (SRR) genes is being developed in horses. A recently developed dense map of the horse Y chromosome will provide genes that are expressed exclusively in males and, therefore, have an impact on stallion fertility. Overall, these advances in equine genome analysis hold promise for improved diagnosis and treatment of various conditions in horses.  相似文献   

11.
Brassica carinata is an important oilseed crop with unique favourable traits that are desirable for other Brassica crops. However, given the limited research into genetic resources in B. carinata, knowledge of the genetic structure of this species is relatively poor. Nine homozygous, genetically distinct accessions of B. carinata were obtained via microspore culture, from which two divergent doubled haploid (DH) lines were used to develop a DH mapping population that consisted of 183 lines. The mapping population showed segregation of multiple traits of interest. A genetic map was constructed with PCR-based markers, and a total of 212 loci, which covered 1,703?cM, were assigned to eight linkage groups in the B genome and nine linkage groups in the C genome, which allowed comparison with genetic maps of other important Brassica species that contain the B/C genome(s). Loci for two Mendelian-inherited traits related to pigmentation (petal and anther tip colour) and one quantitative trait (seed coat colour) were identified using the linkage map. The significance of the mapping population in the context of genetic improvement of Brassica crops is discussed.  相似文献   

12.
Lethal White Foal Syndrome is a disease associated with horse breeds that register white coat spotting patterns. Breedings between particular spotted horses, generally described as frame overo, produce some foals that, in contrast to their parents, are all white or nearly all white and die shortly after birth of severe intestinal blockage. These foals have aganglionosis characterized by a lack of submucosal and myenteric ganglia from the distal small intestine to the large intestine, similar to human Hirschsprung Disease. Some sporadic and familial cases of Hirschsprung Disease are due to mutations in the endothelin B receptor gene (EDNRB). In this study, we investigate the role of EDNRB in Lethal White Foal Syndrome. A cDNA for the wild-type horse endothelin-B receptor gene was cloned and sequenced. In three unrelated lethal white foals, the EDNRB gene contained a 2-bp nucleotide change leading to a missense mutation (I118K) in the first transmembrane domain of the receptor, a highly conserved region of this protein among different species. Seven additional unrelated lethal white foal samples were found to be homozygous for this mutation. No other homozygotes were identified in 138 samples analyzed, suggesting that homozygosity was restricted to lethal white foals. All (40/40) horses with the frame overo pattern (a distinct coat color pattern that is a subset of overo horses) that were tested were heterozygous for this allele, defining a heterozygous coat color phenotype for this mutation. Horses with tobiano markings included some carriers, indicating that tobiano is epistatic to frame overo. In addition, horses were identified that were carriers but had no recognized overo coat pattern phenotype, demonstrating the variable penetrance of the mutation. The test for this mutant allele can be utilized in all breeds where heterozygous animals may be unknowingly bred to each other including the Paint Horse, Pinto horse, Quarter Horse, Miniature Horse, and Thoroughbred. Received: 25 November 1997 / Accepted: 3 February 1998  相似文献   

13.
Microsatellite marker technology in combination with three doubled haploid mapping populations of Brassica juncea were used to map and tag two independent loci controlling seed coat colour in B. juncea. One of the populations, derived from a cross between a brown-seeded Indian cultivar, Varuna, and a Canadian yellow-seeded line, Heera, segregated for two genes coding for seed coat colour; the other two populations segregated for one gene each. Microsatellite markers were obtained from related Brassica species. Three microsatellite markers (Ra2-A11, Na10-A08 and Ni4-F11) showing strong association with seed coat colour were identified through bulk segregant analysis. Subsequent mapping placed Ra2-A11 and Na10-A08 on linkage group (LG) 1 at an interval of 0.6 cM from each other and marker Ni4-F11 on LG 2 of the linkage map of B. juncea published previously (Pradhan et al., Theor Appl Genet 106:607–614, 2003). The two seed coat colour genes were placed with markers Ra2-A11 and Na10-A08 on LG 1 and Ni4-F11 on LG 2 based on marker genotyping data derived from the two mapping populations segregating for one gene each. One of the genes (BjSC1) co-segregated with marker Na10-A08 in LG 1 and the other gene (BjSC2) with Ni4-F11 in LG 2, without any recombination in the respective mapping populations of 130 and 103 segregating plants. The identified microsatellite markers were studied for their length polymorphism in a number of yellow-seeded eastern European and brown-seeded Indian germplasm of B. juncea and were found to be useful for the diversification of yellow seed coat colour from a variety of sources into Indian germplasm.  相似文献   

14.
绵羊基因组研究进展   总被引:6,自引:1,他引:6  
郭晓红  储明星  周忠孝 《遗传》2004,26(1):103-108
过去几年中,家畜基因组计划取得了巨大进展。已经构建了猪、鸡、牛、绵羊、马、鹿的遗传图谱,其遗传标记间距在5~20cM。这些图谱对于家畜中与重要经济性状相关的基因或遗传标记的鉴定非常重要。该文从绵羊的基因图谱、比较图谱、重要经济性状基因及QTL定位方面对绵羊基因组的研究进展作了简要阐述。 Abstract:During the last few years,advances in livestock genome projects have been remarkable.Species-specific genetic maps exist for pig,chicken,cattle,sheep,horse,and deer with marker intervals of 5 to 20 cM.These maps have been essential for the identification of genes and genetic markers associated with importantly economic traits in livestock.In this paper,advances of gene map,comparative map,the genes for importantly economic traits and quantitative trait loci (QTL) mapping were briefly introduced in sheep.  相似文献   

15.
Four loci seem responsible for the dilution of the basic coat colours in horse: Dun (D), Silver Dapple (Z), Champagne (CH) and Cream (C). Apart from the current phenotypes ascribed to these loci, pearl has been described as yet another diluted coat colour in this species. To date, this coat colour seems to segregate only in the Iberian breeds Purebred Spanish horse and Lusitano and has also been described in breeds of Iberian origin, such as Quarter Horses and Paint Horse, where it is referred to as the ‘Barlink Factor’. This phenotype segregates in an autosomal recessive manner and resembles some of the coat colours produced by the champagne CHCH and cream CCr alleles, sometimes being difficult to distinguish among them. The interaction between compound heterozygous for the pearl Cprl and cream CCr alleles makes SLC45A2 the most plausible candidate gene for the pearl phenotype in horses. Our results provide documented evidence for the missense variation in exon 4 [SLC45A2:c.985G>A; SLC45A2:p.(Ala329Thr)] as the causative mutation for the pearl coat colour. In addition, it is most likely involved as well in the cremello, perlino and smoky cream like phenotypes associated with the compound CCr and Cprl heterozygous genotypes (known as cream pearl in the Purebred Spanish horse breed). The characterization of the pearl mutation allows breeders to identify carriers of the Cprl allele and to select this specific coat colour according to personal preferences, market demands or studbook requirements as well as to verify segregation within particular pedigrees.  相似文献   

16.
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.  相似文献   

17.
A method to quantify the contribution of subpopulations to genetic diversity in the whole population was assessed using pedigree information. The standardization of between- and within-subpopulation mean coancestries was developed to account for the different coat colour subpopulation sizes in the Spanish Purebred (SPB) horse population. The data included 166264 horses registered in the SPB Studbook. Animals born in the past 11 years (1996 to 2006) were selected as the 'reference population' and were grouped according to coat colour into eight subpopulations: grey (64 836 animals), bay (33 633), black (9414), chestnut (1243), buckskin (433), roan (107), isabella (57) and white (37). Contributions to the total genetic diversity were first assessed in the existing subpopulations and later compared with two scenarios with equal subpopulation size, one with the mean population size (13 710) and another with a low population size (100). Ancestor analysis revealed a very similar origin for the different groups, except for six ancestors that were only present in one of the groups likely to be responsible for the corresponding colour. The coancestry matrix showed a close genetic relationship between the bay and chestnut subpopulations. Before adjustment, Nei's minimum distance showed a lack of differentiation among subpopulations (particularly among the black, chestnut and bay subpopulations) except for isabella and white individuals, whereas after adjustment, white, roan and grey individuals appeared less differentiated. Standardization showed that balancing coat colours would contribute preserving the genetic diversity of the breed. The global genetic diversity increased by 12.5% when the subpopulations were size standardized, showing that a progressive increase in minority coats would be profitable for the genetic diversity of this breed. The methodology developed could be useful for the study of the genetic structure of subpopulations with unbalanced sizes and to predict their genetic importance in terms of their contribution to genetic variability.  相似文献   

18.
The availability of genetic maps and phenotypic data of segregating populations allows to localize and map agronomically important genes, and to identify closely associated molecular markers to be used in marker-assisted selection and positional cloning. The objective of the present work was to develop a durum wheat intervarietal genetic and physical map based on genomic microsatellite or genomic simple sequence repeats (gSSR) markers and expressed sequence tag (EST)-derived microsatellite (EST-SSR) markers. A set of 122 new EST-SSR loci amplified by 100 primer pairs was genetically mapped on the wheat A and B genome chromosomes. The whole map also comprises 149 gSSR markers amplified by 120 primer pairs used as anchor chromosome loci, two morphological markers (Black colour, Bla1, and spike glaucousness, Ws) and two seed storage protein loci (Gli-A2 and Gli-B2). The majority of SSR markers tested (182) was chromosome-specific. Out of 275 loci 241 loci assembled in 25 linkage groups assigned to the chromosomes of the A and B genome and 34 remained unlinked. A higher percentage of markers (54.4%), localized on the B genome chromosomes, in comparison to 45.6% distributed on the A genome. The whole map covered 1,605 cM. The B genome accounted for 852.2 cM of genetic distance; the A genome basic map spanned 753.1 cM with a minimum length of 46.6 cM for chromosome 5A and a maximum of 156.2 cM for chromosome 3A and an average value of 114.5 cM. The primer sets that amplified two or more loci mapped to homoeologous as well as to non-homoeologous sites. Out of 241 genetically mapped loci 213 (88.4%) were physically mapped by using the nulli-tetrasomic, ditelosomic and a stock of 58 deletion lines dividing the A and B genome chromosomes in 94 bins. No discrepancies concerning marker order were observed but the cytogenetic maps revealed in some cases small genetic distance covered large physical regions. Putative function for mapped SSRs were assigned by searching against GenBank nonredundant database using TBLASTX algorithms.  相似文献   

19.
The appaloosa coat colour pattern of the horse is similar to that caused by the rump-white (Rw) gene in the mouse. In the mouse Rw colour pattern is the result of an inversion involving the proto-oncogene c-kit (KIT). Therefore, we investigated KIT as a candidate gene that encodes the appaloosa coat colour gene (Lp) in horses. KIT plays a critical role in haematopoiesis, gametogenesis, and melanogenesis and encodes a transmembrane tyrosine kinase receptor that belongs to the PDGF/CSF-1/c-KIT receptor subfamily. Half-sib families segregating for Lp were uninformative for a reported polymorphism in KIT. However, KIT is located on horse chromosome 3 close to albumin (ALB), serum carboxylesterase (ES), vitamin D-binding protein (GC) and microsatellite markers ASB23, LEX007, LEX57, and UCDEQ437. Indeed, KIT and ASB23 were localized to ECA3q21-22.1 and 3q22.1-22.3, respectively, by fluorescent in situ hybridization. Family studies were conducted to investigate linkage of Lp to these markers using eight half-sib families in which Appaloosa stallions were mated to solid coloured mares. Linkage of Lp to the chromosome region containing ES, ALB, GC, ASB23, UCDEQ437, LEX57, and LEX007 was investigated by a multipoint linkage analysis using the computer program GENEHUNTER. LOD scores over the interval under investigation ranged from -4.28 to -12.48, with a score of -12.48 at the location for ASB23. Therefore, it was concluded that appaloosa (Lp) is not linked to any of the tested markers on ECA3, and thus Lp is unlikely to be the product of KIT.  相似文献   

20.
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号