首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
This research compared the binding and release of recombinant human bone morphogenetic protein 2 (rhBMP-2) with a series of hydrophobic and hydrophilic poly-lactide-co-glycolide (PLGA) copolymers. Porous microspheres were produced via a double emulsion process. Binding and incorporation of protein were achieved by soaking microspheres in buffered protein solutions, filtering, and comparing protein concentration remaining to nonmicrosphere-containing samples. Protein release was determined by soaking bound microspheres in a physiological buffer and measuring protein concentration (by reversed-phase high-performance liquid chromatography) in solution over time. Normalized for specific surface area and paired by polymer molecular weight. microspheres made from hydrophilic 50∶50 or 75∶25 PLGA bound significantly more protein than microspheres made from the corresponding hydrophobic PLGA. Increased binding capacity correlated with higher polymer acid values. With certain polymers, rhBMP-2 adsorption was decreased or inhibited at high protein concentration, but protein loading could be enhanced by increasing the protein solution:PLGA (volume:mass) ratio or by repetitive soaking. Microspheres of various PLGAs released unbound protein in 3 days, whereas the subsequent bound protein release corresponded to mass loss. RhBMP-2 binding to PLGA was controlled by the acid value, protein concentration, and adsorption technique. The protein released in 2 phases: the first occurred over 3 days regardless of PLGA used and emanated from unbound, incorporated protein, while the second was controlled by mass loss and therefore was dependent on the polymer molecular weight. Overall, control of rhBMP-2 delivery is achievable by selection of PLGA microsphere carriers. Published: October, 7, 2001.  相似文献   

2.
The hypothesis of this research was that implants of poly(lactide-co-glycolide) (PLGA) microspheres loaded with bone morphogenetic protein-2 (rhBMP-2) and distributed in a freeze-dried carboxymethylcellulose (CMC) matrix would produce more new bone than would matrix implants of non-protein-loaded microspheres or matrix implants of only CMC. To test this hypothesis it was necessary to fashion microsphere-loaded CMC implants that were simple to insert, fit precisely into a defect, and would not elicit swelling. Microspheres were produced via a water-in-oil-in-water double-emulsion system and were loaded with rhBMP-2 by soaking them in a buffered solution of the protein at a concentration of 5.4 mg protein per gram of PLGA. Following recovery of the loaded microspheres by lyophilization matrices for implantation were prepared by lyophilizing a suspension of the microspheres in 2% CMC in flat-bottom tissue culture plates. Similar matrices were made with 2% CMC and with 2% CMC containing blank microspheres. A full-thickness calvarial defect model in New Zealand white rabbits was used to assess bone growth. Implants fit the defect well allowing for direct application. Six weeks postsurgery, defects were collected and processed for undecalcified histology. In vitro, 60% of the loaded rhBMP-2 released from devices or microspheres in 5 to 7 days. With the unembedded microspheres releasing faster than those embedded in CMC In vivo. the rhBMP-2 microspheres greatly enhanced bone healing, whereas nonloaded PLGA microspheres in the CMC implants had little effect. The results showed that a lyophilized device of rhBMP-2 PLGA microspheres in CMC was an effective implantable protein-delivery system for the use in bone repair. Published: October 7. 2001.  相似文献   

3.
Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery   总被引:1,自引:0,他引:1  
A protein loaded three-dimensional scaffold can be used for protein delivery and bone tissue regeneration. The main objective of this project was to develop recombinant human bone morphogenetic protein-2 (rhBMP-2) loaded poly(D,L-lactide-co-glycolide)/hydroxylapatite (PLGA/HAp) composite fibrous scaffolds through a promising fabrication technique, electrospinning. In vitro release of BMP-2 from these scaffolds, and the attachment ability and viability of marrow derived messenchymal stem cells (MSCs) in the presence of the scaffolds were investigated. The PLGA/HAp composite scaffolds developed in this study exhibit good morphology and it was observed that HAp nanoparticles were homogeneously dispersed inside PLGA matrix within the scaffold. The composite scaffolds allowed sustained (2-8 weeks) release of BMP-2 whose release rate was accelerated with increasing HAp content. It was also shown that BMP-2 protein successfully maintained its integrity and natural conformations after undergoing the process of electrospinning. Cell culture experiments showed that the encapsulation of HAp could enhance cell attachment to scaffolds and lower cytotoxicity.  相似文献   

4.
目的:由于长期服用左旋多巴治疗帕金森病,其药物浓度波动刺激易引起异动症,本实验旨在制备突释小,药物释放浓度稳定的左旋多巴甲酯微球制剂。方法:将左旋多巴甲酯用复乳法包裹于PLGA微球内,采用C18反相色谱研究药物包封率和体外释放行为。结果:通过调节药物浓度和不同高分子组合筛选出突释小,包封率高且缓慢释放的处方。结论:左旋多巴甲酯包裹于PLGA能实现理想的缓释效果,降低药物浓度波动,为后期药效学实验提供基础。  相似文献   

5.
In the present study we developed alginate-chitosan-poly(lactic-co-glycolic acid) (PLGA) composite microspheres to elevate protein entrapment efficiency and decrease its burst release. Bovine serum albumin (BSA), which used as the model protein, was entrapped into the alginate microcapsules by a modified emulsification method in an isopropyl alcohol-washed way. The rapid drug releases were sustained by chitosan coating. To obtain the desired release properties, the alginate-chitosan microcapsules were further incorporated in the PLGA to form the composite microspheres. The average diameter of the composite microcapsules was 31+/-9microm and the encapsulation efficiency was 81-87%, while that of conventional PLGA microspheres was just 61-65%. Furthermore, the burst releases at 1h of BSA entrapped in composite microspheres which containing PLGA (50:50) and PLGA (70:30) decreased to 24% and 8% in PBS, and further decreased to 5% and 2% in saline. On the contrary, the burst releases of conventional PLGA microspheres were 48% and 52% in PBS, respectively. Moreover, the release profiles could be manipulated by regulating the ratios of poly(lactic acid) to poly(glycolic acid) in the composite microspheres.  相似文献   

6.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.  相似文献   

7.
目的:研究装载于不同分子量的PLGA中的5-氟尿嘧啶微球的制备方法及其在体外条件下的缓释行为。方法:以水包油包固复乳法将5-氟尿嘧啶包裹在高分子聚乳酸-聚羟基乙酸共聚物(PLGA)中,形成缓释微球,考察其大小,外观,包封率等理化性质,以紫外分光光度法为检测方法研究其体外释放行为。结果:经扫描电子显微镜观察,所制备的微球形态完整,大小较均匀。具有一定得包封率和载药量,体外释放研究表明其处方1和处方2的缓释时间为8天和23天。结论:以水包油包固复乳法制备的PLGA 5-氟尿嘧啶微球能够达到缓释的目的。  相似文献   

8.
This paper describes the formulation of a biodegradable microparticulate drug delivery system containing clodronate, a bisphosphonate intended for the treatment of bone diseases. Microspheres were prepared with several poly(D,L-lactide-co-glycolide) (PLGA) copolymers of various molecular weights and molar compositions and 1 poly(D,L-lactide) (PDLLA) homopolymer by a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation procedure. Critical process parameters and formulation variables (ie, addition of stabilizing agents) were evaluated for their effect on drug encapsulation efficiency and clodronate release rate from microparticles Well-formed clodronate-loaded microspheres were obtained for all polymers by selecting suitable process parameters (inner water/oil volume ratio 1∶16, temperature-raising rate in the solvent evaporation step 1°C/min, 2% wt/vol NaCl in the external aqueous phase). Good yields were obtained in all batches of clodronate microspheres (above 60%); drug encapsulation efficiencies ranged between 49% and 75% depending on the polymer used. Clodronate release from all copolymer microspheres was completed in about 48 hours, while those from PDLLA microspheres required about 20 days. The change of microsphere composition by adding a surfactant such as Span 20 or a viscosing agent such as carboxymethylcellulose extended the long-term release up to 3 months. Clodronate was successfully entrapped in PLGA and PDLLA microspheres, and drug release could be modulated from 48 hours up to 3 months by suitable selection of polymer, composition, additives, and manufacturing conditions. Published: July 11, 2001.  相似文献   

9.
目的:考察左旋多巴甲酯在PLGA微球中的稳定性并探讨其稳定方法。方法:利用HPLC的方法考察了左旋多巴甲酯在不同pH值和光照的环境中和微球里的稳定性。结果:左旋多巴甲酯在pH3中稳定,在微球中也可以稳定一周。结论:包封左旋多巴甲酯在PLGA微球中,是一种有效地保护了左旋多巴甲酯在微球中的活性,可以实现长效缓释,是一种可行的方案。  相似文献   

10.
Insulin microcrystals were encapsulated (microcrystal/PLGA) within poly(lactide-co-glycolide) (PLGA 50:50) by the multiple emulsification solvent evaporation technique and compared with insulin solution microspheres (solution/PLGA) in terms of their morphology, size distribution, drug content, encapsulation efficiency, and stability of insulin during release.  相似文献   

11.
壳聚糖温敏凝胶是一种新型的可注射、在体固化的载体材料,该材料在室温条件下呈生理中性的溶液状态,在37℃左右可由溶液转变成水凝胶。该水凝胶对大分子药物具有良好的缓释效能,但对小分子药物缓释效能极差。为制备同时缓释生长因子重组人骨形态发生蛋白-2(recombined human bone morphogenetic protein-2,rhBMP-2)和抗菌药物氯己定的功能性壳聚糖温敏凝胶,将小分子药物氯己定先与β-环糊精制备成包结物,再将rhBMP-2与β-环糊精/氯己定包结物共混于壳聚糖温敏凝胶中,通过HAAKE粘度测量仪,对比加入目标药物前后系统的流变学性质,并且分别通过高效液相(high performance liquid chromatography,HPLC)和酶联免疫吸附(enzyme-linkedimmunosorbent assay,ELISA)方法测量目标药物的体外释放性质,温敏凝胶系统的流变学性质几乎未受加入药物的影响。而氯己定从凝胶系统中释放的速度大大减慢,药物持续释放可保持1月以上。同时,rhBMP-2也获得较好的缓释效果。通过先行环糊精包结共混的方法,成功制备同时缓释rhBMP-2和氯己定的功能性温敏凝胶。  相似文献   

12.
In an effort to develop a new way of drug delivery, especially for polyenic antifungal molecules, we have incorporated amphotericin B (AmB) into biodegradable galactosylated poly (L-lactic acid) (L-PLA) and poly (L-lactic-co-glycolic acid) (PLGA) microspheres. These drug carriers were prepared by solvent evaporation using an oil/water (o/w) emulsion. The ratio of galactosyl spacers with different chain lengths was 1.74-2.78%. The maximal quantity of AmB encapsulated reported to 100 mg of the galactosylated microspheres was 7.14 mg for L-PLA (encapsulation rate 45% of mole) and 6.42 mg for PLGA derivatives (encapsulation rate 81% of mole). In our yeast model, drug release depended on three factors: (i) presence of galactosylated antennae, (ii) length of galactosyl antenna and (iii) nature of the polymer. More of the AmB trapped in PLGA microspheres was released than from PLA microspheres. These novel functionalised microspheres could be required for the delivering of therapeutic agents according to their recognition to specific cells.  相似文献   

13.
目的:降钙素(一个由32个氨基酸组成的多肽)是治疗骨质疏松的首选药之一。降钙索的劣势是其半衰期过短,需要一天一次注射给药,本实验旨在制备突释小,药物释放浓度稳定的降钙素微球制剂。方法:制备降钙素羧酸葡聚糖颗粒和降钙素硫酸葡聚糖颗粒组合物,分别将其包裹于PLGA微球内,制备成降钙素组合微球,采用C18反相色谱柱研究药物的包封率和体外释放行为。结果:所制得的降钙素葡聚糖颗粒缓释微球体外释放一个月,释放曲线比较完美,接近零级释放。结论:本研究制得的降钙素葡聚糖颗粒缓释组合微球能实现理想的体外缓释效果,为后期药动学实验提供基础。  相似文献   

14.
目的:由于长期服用左旋多巴治疗帕金森病,其药物浓度波动刺激易引起异动症,本实验旨在制备突释小,药物释放浓度稳定的左旋多巴甲酯微球制剂。方法:将左旋多巴甲酯用复乳法包裹于PLGA微球内,采用C18反相色谱研究药物包封率和体外释放行为。结果:通过调节药物浓度和不同高分子组合筛选出突释小,包封率高且缓慢释放的处方。结论:左旋多巴甲酯包裹于PLGA能实现理想的缓释效果,降低药物浓度波动,为后期药效学实验提供基础。  相似文献   

15.
目的:开发一种有效地长效缓释干扰素α微球制剂。方法:利用S/O/W乳剂-挥发法制备了包裹干扰素α多糖颗粒的PLAG微球,对其外观形态进行了考察,并用ELISA方法考察了微球体外释放效果。结果:制备的干扰素α微球圆整光滑,粒径均匀;经24天体外释放,累计释放率达到80%以上。结论:通过包封包裹干扰素α的多糖颗粒进PLGA微球,有效地保护了干扰素α在微球中的活性,实现了长效缓释,是一种可行的缓释方案。  相似文献   

16.
In this study the w/o/w extraction-evaporation technique was adopted to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres loading recombinant human epidermal growth factor (rhEGF). The microspheres were characterized for morphology by transmission electron microscopy (TEM) and particle size distribution. The release performances, the proliferation effects and therapeutic effects of rhEGF-loaded PLGA microspheres were all studied. The results showed that these spherical microspheres had a narrow size distribution and a high drug encapsulation efficiency (85.6%). RhEGF-loaded microspheres enhanced the growth rate of fibroblasts and wound healing more efficiently than pure rhEGF. The number of the proliferating cell nuclear antigen (PCNA) in the epidermis layer with the microsphere treatment was significantly larger than those of the control groups. Overall locally sustained delivery of rhEGF from biodegradable PLGA microspheres may serve as a novel therapeutic strategy for diabetic ulcer repair.  相似文献   

17.
The release kinetics of recombinant human bone morphogenic factor 2 (rhBMP-2) from collagen hydrogel in the presence of human blood plasma have been studied. The expulsion of rhBMP-2 from the collagen-BMP-2 complex by the competitive adhesion of collagen-binding proteins penetrating from plasma was firstly recognized. It was experimentally proven that that blood plasma fibronectin is the main collagen-binding protein, which is responsible for the controlled release of rhBMP-2. As a result, a new collagen hydrogel with the incorporation of fibronectin was created which retained rhBMP-2 for a twice longer period as compared to the ordinary collagen hydrogel. A distinctive feature of this new collagen-fibronectin matrix is the slow release of rhBMP-2 in the first three days which allows for the avoiding of adverse effects in clinics caused by the rapid release of large amounts of rhBMP-2 from collagen hydrogel.  相似文献   

18.
Psoriasis is a chronic, autoimmune skin disease affecting approximately 2% of the world's population. Clobetasol propionate which is a superpotent topical corticosteroid is widely used for topical treatment of psoriasis. Conventional dosage forms like creams and ointments are commonly prefered for the therapy. The purpose of this study was to develop a new topical delivery system in order to provide the prolonged release of clobetasol propionate and to reduce systemic absorption and side effects of the drug. Clobetasol propionate loaded-poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were prepared by oil-in-water emulsion–solvent evaporation technique. Particle size analysis, morphological characterization, DSC and XRD analyses and in vitro drug release studies were performed on the microparticle formulations. Emulgel formulations were prepared as an alternative for topical delivery of clobetasol propionate. In vitro drug release studies were carried out from the emulgel formulations containing pure drug and drug-loaded microspheres. In addition, the same studies were performed to determine the drug release from the commercial cream product of clobetasol propionate. The release of clobetasol propionate from the emulgel formulations was significantly higher than the commercial product. In addition, the encapsulation of clobetasol propionate in the PLGA microspheres significantly delayed the drug release from the emulgel formulation. As a result, the decrease in the side effects of clobetasol propionate by the formulation containing PLGA microspheres is expected.  相似文献   

19.
An objective of the present investigation was to prepare and evaluate Eudragit-coated pectin microspheres for colon targeting of 5-fluorouracil (FU). Pectin microspheres were prepared by emulsion dehydration method using different ratios of FU and pectin (1:3 to 1:6), stirring speeds (500–2000 rpm) and emulsifier concentrations (0.75%–1.5% wt/vol). The yield of preparation and the encapsulation efficiencies were high for all pectin microspheres. Microspheres prepared by using drug:polymer ratio 1:4, stirring speed 1000 rpm, and 1.25% wt/vol concentration of emulsifying agent were selected as an optimized formulation. Eudragit-coating of pectin microspheres was performed by oil-in-oil solvent evaporation method using coat: core ratio (5:1). Pectin microspheres and Eudragit-coated pectin microspheres were evaluated for surface morphology, particle size and size distribution, swellability, percentage drug entrapment, and in vitro drug release in simulated gastrointestinal fluids (SGF). The in vitro drug release study of optimized formulation was also performed in simulated colonic fluid in the presence of 2% rat cecal content. Organ distribution study in albino rats was performed to establish the targeting potential of optimized formulation in the colon. The release profile of FU from Eudragit-coated pectin microspheres was pH dependent. In acidic medium, the release rate was much slower; however, the drug was released quickly at pH 7.4. It is concluded from the present investigation that Eudragit-coated pectin microspheres are promising controlled release carriers for colon-targeted delivery of FU. Published: February 16, 2007  相似文献   

20.
重组人粒细胞集落刺激因子缓释微球的研究   总被引:1,自引:0,他引:1  
目的:研究固体/油/水法制备重组人粒细胞集落刺激因子缓释微球,为开发其缓释剂型进行初步研究。方法:以聚乳酸.聚羟乙酸共聚物(PLGA)为载体材料:用固体/油/水法和水/油/水法制备载rhG-CSF缓释微球;考察粒径大小、外观、包封率等理化性质;用MieroBCA法考察微球的体外释药特性及影响因素;用SEC-HPLC和MTT比色法初步评价了微球制备工艺过程对rhG-CSF稳定性的影响。结果:两种方法制得的微球形态圆整、分散性良好,包封率均超过80%。固/油/水法制得的微球体外释放在2周内可超过90%,而水/油/水法制得的微球在相同的时间内仅释放30%。对于固/油/水法制备过程,SEC-HPLC法测定蛋白无明显聚集体出现,MTT法测定蛋白活性无明显损失。结论:实验证明了固/油/水法制备的PLGA微球可以实现2周以上的体外缓释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号