首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenoviruses target their double-stranded DNA genome and its associated core proteins to the interphase nucleus; this core structure then enters through the nuclear pore complex. We have used digitonin permeabilized cell import assays to study the cellular import factors involved in nuclear entry of virus DNA and the core proteins, protein V and protein VII. We show that inhibition of transportin results in aberrant localization of protein V and that transportin is necessary for protein V to accumulate in the nucleolus. Furthermore, inhibition of transportin results in inhibition of protein VII and DNA import, whereas disruption of the classical importin alpha-importin beta import pathway has little effect. We show that mature protein VII has different import preferences from the precursor protein, preVII from which it is derived by proteolytic processing. While bacterially expressed glutathione S-transferase (GST)-preVII primarily utilizes the pathway mediated by importin alpha-importin beta, bacterially expressed GST-VII favours the transportin pathway. This is significant because while preVII is important during viral replication and assembly only mature VII is available during viral DNA import to a newly infected cell. Our results implicate transportin as a key import receptor for the nuclear localization of adenovirus core.  相似文献   

2.
Histones are the major structural proteins in eukaryotic chromosomes. This group of small very basic proteins consists of the H1 linker histones and the core histones H2A, H2B, H3 and H4. Despite their small size, the nuclear import of histones occurs by an active transport mechanism and not simply by diffusion. Histones contain several nuclear localisation signals (NLS) that can be subdivided into two different types of signal structures. We have previously shown that H1 histones are transported by a heterodimeric import receptor complex consisting of importin beta and importin 7, and we now describe the receptors required for the import of the core histones. Competition experiments using the in vitro transport assay indicate that the import pathway of the core histones differs from that of the linker histones and of nuclear proteins with classical NLS. In vitro binding assays show that each of the import receptors importin beta, importin 5, importin 7 and transportin, has the capacity to bind to any of the four core histones. Reconstitution experiments with recombinant factors indicate that each of these factors can independently serve as an import receptor for each of the core histones.  相似文献   

3.
Axo-glial interactions regulate the localization of axonal paranodal proteins   总被引:10,自引:0,他引:10  
The SR proteins, a group of abundant arginine/serine (RS)-rich proteins, are essential pre-mRNA splicing factors that are localized in the nucleus. The RS domain of these proteins serves as a nuclear localization signal. We found that RS domain-bearing proteins do not utilize any of the known nuclear import receptors and identified a novel nuclear import receptor specific for SR proteins. The SR protein import receptor, termed transportin-SR (TRN-SR), binds specifically and directly to the RS domains of ASF/SF2 and SC35 as well as several other SR proteins. The nuclear transport regulator RanGTP abolishes this interaction. Recombinant TRN-SR mediates nuclear import of RS domain- bearing proteins in vitro. TRN-SR has amino acid sequence similarity to several members of the importin beta/transportin family. These findings strongly suggest that TRN-SR is a nuclear import receptor for the SR protein family.  相似文献   

4.
5.
S J?kel  D G?rlich 《The EMBO journal》1998,17(15):4491-4502
The assembly of eukaryotic ribosomal subunits takes place in the nucleolus and requires nuclear import of ribosomal proteins. We have studied this import in a mammalian system and found that the classical nuclear import pathway using the importin alpha/beta heterodimer apparently plays only a minor role. Instead, at least four importin beta-like transport receptors, namely importin beta itself, transportin, RanBP5 and RanBP7, directly bind and import ribosomal proteins. We found that the ribosomal proteins L23a, S7 and L5 can each be imported alternatively by any of the four receptors. We have studied rpL23a in detail and identified a very basic region to which each of the four import receptors bind avidly. This domain might be considered as an archetypal import signal that evolved before import receptors diverged in evolution. The presence of distinct binding sites for rpL23a and the M9 import signal in transportin, and for rpL23a and importin alpha in importin beta might explain how a single receptor can recognize very different import signals.  相似文献   

6.
Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin alpha/beta and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin beta and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC.  相似文献   

7.
Background: Proteins generally enter or exit the nucleus as cargo of one of a small family of import and export receptors. These receptors bear distant homology to importin β, a subunit of the receptor for proteins with classical nuclear localisation sequences (NLSs). To understand the mechanism of nuclear transport, the next question involves identifying the nuclear pore proteins that interact with the different transport receptors as they dock at the pore and translocate through it.Results: Two pathways of nuclear import were found to intersect at a single nucleoporin, Nup153, localized on the intranuclear side of the nuclear pore. Nup153 contains separate binding sites for importin α/β, which mediates classical NLS import, and for transportin, which mediates import of different nuclear proteins. Strikingly, a Nup153 fragment containing the importin β binding site acted as a dominant-negative inhibitor of NLS import, with no effect on transportin-mediated import. Conversely, a Nup153 fragment containing the transportin binding site acted as a strong dominant-negative inhibitor of transportin import, with no effect on classical NLS import. The interaction of transportin with Nup153 could be disrupted by a non-hydrolyzable form of GTP or by a GTPase-deficient mutant of Ran, and was not observed if transportin carried cargo. Neither Nup153 fragment affected binding of the export receptor Crm1 at the nuclear rim.Conclusions: Two nuclear import pathways, mediated by importin β and transportin, converge on a single nucleoporin, Nup153. Dominant-negative fragments of Nup153 can now be used to distinguish different nuclear import pathways and, potentially, to dissect nuclear export.  相似文献   

8.
The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.  相似文献   

9.
The Rev protein of human immunodeficiency virus type 1 is an RNA-binding protein that is required for nuclear export of unspliced and partially spliced viral mRNAs. Nuclear import of human immunodeficiency virus type 1 Rev has been suggested to depend on the classic nuclear transport receptor importin beta, but not on the adapter protein importin alpha. We now show that, similar to importin alpha, Rev is able to dissociate RanGTP from recycling importin beta, a reaction that leads to the formation of a novel import complex. Besides importin beta, the transport receptors transportin, importin 5, and importin 7 specifically interact with Rev and promote its nuclear import in digitonin-permeabilized cells. A single arginine-rich nuclear localization sequence of Rev is required for interaction with all importins tested so far. In contrast to the importin beta-binding domain of importin alpha, Rev interacts with an N-terminal fragment of importin beta. Transportin contains two independent binding sites for Rev. Hence, the mode of interaction of importin beta and transportin with Rev is clearly distinct from that with their classic import cargoes. Taken together, the viral protein takes advantage of multiple cellular transport pathways for its nuclear accumulation.  相似文献   

10.
Nuclear transport is mediated by transport factors, including the importin β family members. The directionality of nuclear transport is governed by the asymmetrical distribution of the small GTPase Ran. Of note, importin α/β-mediated import of classical nuclear localization signal (cNLS)--containing cargo is more efficient than other Ran-dependent import pathways that do not require importin α. In this study, we characterized the role of importin α in nuclear transport by examining import efficiencies of cNLS-cargo/importin α/β complexes. We first depleted digitonin-permeabilized semi-intact cells of endogenous importin α and used the cells to show that the interaction between importin α and Nup153--a component of the nuclear pore complex (NPC)--is essential for efficient import of importin β-binding domain containing substrates, but not other cargoes that directly bind to importin β. Moreover, we found that the binding of importin α to Nup153 facilitates cNLS-mediated import, and demonstrated that importin α in import complexes and cargo-free importin α prebound to Nup153 promote efficient import of cNLS-containing proteins. This is the first in vitro study showing that in conjunction with Nup153, importin α contributes to directionally biased exit of cNLS-containing cargo to the nuclear side of NPCs.  相似文献   

11.
Eukaryotic cells have the ability to uptake and transport endogenous and exogenous DNA in their nuclei, however little is known about the specific pathways involved. Here we show that the nuclear transport receptor importin 7 (imp7) supports nuclear import of supercoiled plasmid DNA and human mitochondrial DNA in a Ran and energy‐dependent way. The imp7‐dependent pathway was specifically competed by excess DNA but not by excess of maltose‐binding protein fused with the classical nuclear localizing signal (NLS) or the M9 peptides. Transport of DNA molecules complexed with poly‐l ‐lysine was impaired in intact cells depleted of imp7, and DNA complexes remained localized in the cytoplasm. Poor DNA nuclear import in cells depleted of imp7 directly correlated with lower gene expression levels in these cells compared to controls. Inefficient nuclear import of transfected DNA induced greater upregulation of the interferon pathway, suggesting that rapid DNA nuclear import may prevent uncontrolled activation of the innate immune response. Our results provide evidence that imp7 is a non‐redundant component of an intrinsic pathway in mammalian cells for efficient accumulation of exogenous and endogenous DNA in the nucleus, which may be critical for the exchange of genetic information between mitochondria and nuclear genomes and to control activation of the innate immune response .  相似文献   

12.
Proteins containing a classical NLS are transported into the nucleus by the import receptor importin beta, which binds to cargoes via the adaptor importin alpha. The import complex is translocated through the nuclear pore complex by interactions of importin beta with a series of nucleoporins. Previous studies have defined a nucleoporin binding region in the NH2-terminal half of importin beta. Here we report the identification of a second nucleoporin binding region in its COOH-terminal half. Although the affinity of the COOH-terminal region for nucleoporins is dramatically weaker than that of the NH2-terminal region, sets of mutations that perturb the nucleoporin binding of either region reduce the nuclear import activity of importin beta to a similar extent ( approximately 50%). An importin beta mutant with a combination of mutations in the NH2- and COOH-terminal regions is completely inactive for nuclear import. Thus, importin beta possesses two nucleoporin binding sites, both of which are important for its nuclear import function.  相似文献   

13.
14.
Nuclear import and export signals on macromolecules mediate directional, receptor-driven transport through the nuclear pore complex (NPC) by a process that is suggested to involve the sequential binding of transport complexes to different nucleoporins. The directionality of transport appears to be partly determined by the nucleocytoplasmic compartmentalization of components of the Ran GTPase system. We have analyzed whether the asymmetric localization of discrete nucleoporins can also contribute to transport directionality. To this end, we have used quantitative solid phase binding analysis to determine the affinity of an importin beta cargo complex for Nup358, the Nup62 complex, and Nup153, which are in the cytoplasmic, central, and nucleoplasmic regions of the NPC, respectively. These nucleoporins are proposed to provide progressively more distal binding sites for importin beta during import. Our results indicate that the importin beta transport complex binds to nucleoporins with progressively increasing affinity as the complex moves from Nup358 to the Nup62 complex and to Nup153. Antibody inhibition studies support the possibility that importin beta moves from Nup358 to Nup153 via the Nup62 complex during import. These results indicate that nucleoporins themselves, as well as the nucleocytoplasmic compartmentalization of the Ran system, are likely to play an important role in conferring directionality to nuclear protein import.  相似文献   

15.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   

16.
Active transport between nucleus and cytoplasm proceeds through nuclear pore complexes (NPCs) and is mediated largely by shuttling transport receptors that use direct RanGTP binding to coordinate loading and unloading of cargo [1], [2], [3], [4]. Import receptors such as importin β or transportin bind their substrates at low RanGTP levels in the cytoplasm and release them upon encountering RanGTP in the nucleus, where a high RanGTP concentration is predicted. This substrate release is, in the case of import by the importin α/β heterodimer, coupled directly to importin β release from the NPCs. If the importin β –RanGTP interaction is prevented, import intermediates arrest at the nuclear side of the NPCs [5], [6]. This arrest makes it difficult to probe directly the Ran and energy requirements of the actual translocation from the cytoplasmic to the nuclear side of the NPC, which immediately precedes substrate release. Here, we have shown that in the case of transportin, dissociation of transportin–substrate complexes is uncoupled from transportin release from NPCs. This allowed us to dissect the requirements of translocation through the NPC, substrate release and transportin recycling. Surprisingly, translocation of transportin–substrate complexes into the nucleus requires neither Ran nor nucleoside triphosphates (NTPs). It is only nuclear RanGTP, not GTP hydrolysis, that is needed for dissociation of transportin–substrate complexes and for re-export of transportin to the cytoplasm. GTP hydrolysis is apparently required only to restore the import competence of the re-exported transportin and, thus, for multiple rounds of transportin-dependent import. In addition, we provide evidence that at least one type of substrate can also complete NPC passage mediated by importin β independently of Ran and energy.  相似文献   

17.
18.
Inhibition of nuclear import by the proapoptotic protein CC3   总被引:4,自引:0,他引:4       下载免费PDF全文
We report here that the normal cellular protein CC3/TIP30, when in excess, inhibits nuclear import in vitro and in vivo. CC3 binds directly to the karyopherins of the importin beta family in a RanGTP-insensitive manner and associates with nucleoporins in vivo. CC3 inhibits the nuclear import of proteins possessing either the classical nuclear localization signal or the M9 signal recognized by transportin. CC3 also inhibits nuclear translocation of transportin itself. Cells modified to express higher levels of CC3 have a slower rate of nuclear import and, as described earlier, show an increased sensitivity to death signals. A mutant CC3 protein lacking proapoptotic activity has a lower affinity for transportin, is displaced from it by RanGTP, and fails to inhibit nuclear import in vitro and in vivo. Together, our results support a correlation between the ability of CC3 to form a RanGTP-resistant complex with importins, inhibit nuclear import, and induce apoptosis. Significantly, a dominant-negative form of importin beta1 shown previously to inhibit multiple transport pathways induces rapid cell death, strongly indicating that inhibition of nuclear transport serves as a potent apoptotic signal.  相似文献   

19.
We have examined whether signal-mediated nucleocytoplasmic transport can be regulated by phosphorylation of the nuclear transport machinery. Using digitonin-permeabilized cell assays to measure nuclear import and export, we found that the phosphatase inhibitors okadaic acid and microcystin inhibit transport mediated by the import receptors importin beta and transportin, but not by the export receptor CRM1. Several lines of evidence, including the finding that transport inhibition is partially reversed by the broad specificity protein kinase inhibitor staurosporine, indicate that transport inhibition is due to elevated phosphorylation of a component of the nuclear transport machinery. The kinases and phosphatases involved in this regulation are present in the permeabilized cells. A phosphorylation-sensitive component of the nuclear transport machinery also is present in permeabilized cells and is most likely a component of the nuclear pore complex. Substrate binding by the importin alpha.beta complex and the association of the complex with the nucleoporins Nup358/RanBP2 and Nup153 are not affected by phosphatase inhibitors, suggesting that transport inhibition by protein phosphorylation does not involve these steps. These results suggest that cells have mechanisms to negatively regulate entire nuclear transport pathways, thus providing a means to globally control cellular activity through effects on nucleocytoplasmic trafficking.  相似文献   

20.
Nucleocytoplasmic transport of macromolecules is a fundamental process of eukaryotic cells. Translocation of proteins and many RNAs between the nucleus and cytoplasm is carried out by shuttling receptors of the β-karyopherin family, also called importins and exportins. Leptomycin B, a small molecule inhibitor of the exportin CRM1, has proved to be an invaluable tool for cell biologists, but up to now no small molecule inhibitors of nuclear import have been described. We devised a microtiter plate based permeabilized cell screen for small molecule inhibitors of the importin α/β pathway. By analyzing peptidomimetic libraries, we identified β-turn and α-helix peptidomimetic compounds that selectively inhibit nuclear import by importin α/β but not by transportin. Structure–activity relationship analysis showed that large aromatic residues and/or a histidine side chain are required for effective import inhibition by these compounds. Our validated inhibitors can be useful for in vitro studies of nuclear import, and can also provide a framework for synthesis of higher potency nuclear import inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号