首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang SL  Jiang L  Puah CS  Xie LF  Zhang XQ  Chen LQ  Yang WC  Ye D 《Plant physiology》2005,139(1):186-191
Previously, we reported that the TAPETUM DETERMINANT1 (TPD1) gene is required for specialization of tapetal cells in the Arabidopsis (Arabidopsis thaliana) anther. The tpd1 mutant is phenotypically identical to the excess microsporocytes1 (ems1)/extra sporogenous cells (exs) mutant. The TPD1 and EMS1/EXS genes may function in the same developmental pathway in the Arabidopsis anther. Here, we further report that overexpression of TPD1 alters the cell fates in the Arabidopsis carpel and tapetum. When TPD1 was expressed ectopically in the wild-type Arabidopsis carpel, the number of cells in the carpel increased significantly, showing that the ectopic expression of TPD1 protein could activate the cell division in the carpel. Furthermore, the genetic analysis showed that the activation of cell division in the transgenic carpel by TPD1 was dependent on EMS1/EXS, as it did not happen in the ems1/exs mutant. This result further suggests that TPD1 regulates cell fates in coordination with EMS1/EXS. Moreover, overexpression of TPD1 in tapetal cells also delayed the degeneration of tapetum. The TPD1 may function not only in the specialization of tapetal cells but also in the maintenance of tapetal cell fate.  相似文献   

2.

Key message

Cellulose-specific staining revealed that tapetal cells and microsporocytes lose cellulosic walls before the onset of meiosis. Cellulosic wall degradation in microsporocytes might be independent of tapetal cells (or TPD1).

Abstract

Some cell types in a variety of angiosperms have been reported to lack cell walls. Here, we report that the tapetal cells of the anther of Arabidopsis thaliana did not appear to have a cellulosic wall based on staining with Calcofluor and Renaissance 2200. During sporogenous cell formation, cellulosic wall was present in all anther tissues. However, before meiosis it was almost absent on the tapetal cells and on the microsporocytes. In a sporocyteless/nozzle (spl/nzz) mutant, which lacks several components (microsporocytes, tapetum, middle layer and endothecium), cellulosic wall was detected in all anther cells. In another mutant, tapetum determinant1 (tpd1), which lacks tapetum and has more microsporocytes, cellulosic wall was almost absent on the microsporocytes before meiosis, similar to the wild type. These results suggest that the tapetum cells and microsporocytes lose cellulosic walls during microsporocyte formation, and that cell wall degradation occurs downstream of SPL/NZZ and is independent of TPD1.  相似文献   

3.
4.
In safflower, the anther wall at maturity consists of a single epidermis, an endothecium, a middle layer and the tapetum. The tapetum consists mainly of a single layer of cells. However, this single-layer appearance is punctuated by loci having ‘two-celled’ groupings due to additional periclinal divisions in some tapetal cells. Meiotic division in microsporocytes gives rise to tetrads of microspores. The primexine is formed around the protoplasts of microspores while they are still enveloped within the callose wall. Just prior to microgametogenesis, the microspores enlarge through the process of vacuolation, and the exine wall pattern becomes established. Microgametogenesis results in the formation of 3-celled pollen grains. The two elongated sperm cells appear to be connected. The exine wall is highly sculptured with a distinct tectum, columellae, a foot layer, an endexine and a thin intine. Similar to other members of the Asteraceae family, the tapetum is of the invasive type. The most novel finding of this study is that in addition to the presence of invasive tapetal cells, a small population of ‘non-invasive’ tapetal cells is also present. The tapetal cells next to the anther locules in direct contact with the microspores become invasive and start to grow into the space between developing microspores. These tapetal cells synthesize tryphine and eventually degenerate at the time of gametogenesis releasing their content into the anther locules. A smaller population of non-invasive tapetal cells is formed as a result of periclinal divisions at the time of tapetum differentiation. These cells are not exposed to the anther locules until the degeneration of the invasive tapetal cells. The non-invasive tapetal cells have a different cell fate as they synthesize pollenkitt. This material is responsible for allowing some pollen grains to adhere to each other and to the anther wall after anther dehiscence. This observation explains the out-crossing ability of Carthamus species and varieties in nature.  相似文献   

5.
Ma J  Yan B  Qu Y  Qin F  Yang Y  Hao X  Yu J  Zhao Q  Zhu D  Ao G 《Journal of cellular biochemistry》2008,105(1):136-146
In flowering plants, pollen formation depends on the differentiation and interaction of two cell types in the anther: the reproductive cells, called microsporocytes, and somatic cells that form the tapetum. Previously, we cloned a pollen specific gene, zm401, from a cDNA library generated from the mature pollen of Zea mays. Expression of partial cDNA of zm401 in maize and ectopic expression of zm401 in tobacco suggested it may play a role in anther development. Here we present the expression and functional characterization of this pollen specific gene in maize. Zm401 is expressed primarily in the anthers (tapetal cells as well as microspores) in a developmentally regulated manner. That is, it is expressed from floret forming stage, increasing in concentration up to mature pollen. Knockdown of zm401 significantly affected the expression of ZmMADS2, MZm3-3, and ZmC5, critical genes for pollen development; led to aberrant development of the microspore and tapetum, and finally male-sterility. Zm401 possesses highly conserved sequences and evolutionary conserved stable RNA secondary structure in monocotyledon. These data show that zm401 could be one of the key growth regulators in anther development, and functions as a short-open reading-frame mRNA (sORF mRNA) and/or noncoding RNA (ncRNA).  相似文献   

6.
In flowering plants, the anther contains highly specialized reproductive and somatic cells that are required for male fertility. Genetic studies have uncovered several genes that are important for anther development. However, little information is available regarding most genes active during anther development, including possible relationships between these genes and genetically defined regulators. In Arabidopsis, two previously isolated male-sterile mutants display dramatically altered anther cell differentiation patterns. The sporocyteless (spl)/nozzle (nzz) mutant is defective in the differentiation of primary sporogenous cells into microsporocytes, and does not properly form the anther wall. The excess microsporocytes1 (ems1)/extrasporogenous cells (exs) mutants produce excess microsporocytes at the expense of the tapetum. To gain additional insights into microsporocyte and tapetum differentiation and to uncover potential genetic interactions, expression profiles were compared between wild-type anthers (stage 4-6) and those of the spl or ems1 mutants. A total of 1954 genes were found to be differentially expressed in the ems1 and/or spl anthers, and these were grouped into 14 co-expression clusters. The presence of genes with known and predicted functions in specific clusters suggests potential functions for other genes in the same cluster. To obtain clues about possible co-regulation within co-expression clusters, we searched for shared cis-regulatory motifs in putative promoter regions. Our analyses were combined with data from previous studies to develop a model of the anther gene regulatory network. This model includes hypotheses that can be tested experimentally to gain further understanding of the mechanisms controlling anther development.  相似文献   

7.
Summary The ultrastructure of the secretory, binucleate tapetum of Brassica oleracea in the micro spore mother cell (MMC) stage through to the mature pollen stage is reported. The tapetal cells differentiate as highly specialized cells whose development is involved in lipid accumulation in their final stage. They start breaking down just before anther dehiscence. Nuclei with dispersed chromatin, large nucleoli and many ribosomes in the cytoplasm characterize the tapetal cells. The wall-bearing tapetum phase ends at the tetrade stage. The dissolution of tapetal walls begins from the inner tangential wall oriented towards the loculus and proceeds gradually along the radial walls to the outer tangential one. The plasmodesmata transversing the radial walls between tapetal cells persist until the mature microspore, long after loss of the inner tangential wall. After wall dissolution, the tapetal protoplasts retain their integrity and position within the anther locule. The tapetal cell membrane is in direct contact with the exine of the microspores/pollen grains and forms tubular evaginations that increase its surface area and appear to be involved in the translocation of solutes from the tapetal cells to the microspores/ pollen grains. The tapetal cells exhibit a polarity expressed by spatial differentiation in the radial direction.  相似文献   

8.
9.
The development of tapetum and pollen in transgenic tobacco (Nicotiana tabacum L. ) harboring a chimaeric gene TA29-Barnase was compared with that of the wild-type plant. The specific expression of the exogenous genes in anther led to premature tapetal degradation, which started at the early stage of meiosis and terminated at the tetrad stage. In the wild-type anthers, tapetal degradation started at the early stage of bicellular microgametophyte and ended at the later stage of pollen development. The cytological changes of tapetal degradation in the transgenic plants were characterized by vacuolization of the tapetal cells, then nuclear condensation, and consequent massive degradation of tapetal cells. Meanwhile, the pollen mother cells gradually degraded and became destroyed along with the progress of meiosis, leaving only a few which could successfully complete their meiosis to form microspores. This observation also indicated that the TA29-Barnase gene in anther was not uniformly expressed. In addition, the structural difference between the male sterility induced by exogenous gene and the natural sterile was also discussed.  相似文献   

10.
The tapetum of the anther locule encloses the male reproductive cells and plays a supportive role for normal pollen development. However, the underlying mechanism remains less understood. Previously, we identified a complete recessive male sterile mutant, post-meiotic deficient anther1 (pda1), with abnormal postmeiotic tapetal development. In this study we comprehensively characterized pda1. Chemical analysis uncovered that pda1 anther had significant lower levels of cutin monomers and cuticular waxes. PDA1 gene encodes an ATP-binding cassette (ABC) half-transporter, namely OsABCG15, which is conserved from algae to higher plants. In situ RNA hybridization assay showed that PDA1 is strongly expressed in tapetal cells, and weakly in microspores during the anther development. Additionally, the expression of two pollen exine biosynthetic genes CYP704B2 and CYP703A3 was dramatically reduced in pda1 mutant anthers. Altogether, these observations suggest that the tapetum-expressed ABC transporter PDA1 plays a crucial role in secreting lipidic precursors from the tapetum to developing microspores and the anther epidermis.  相似文献   

11.
Receptor-like kinases (RLK) comprise a large gene family within the Arabidopsis genome and play important roles in plant growth and development as well as in hormone and stress responses. Here we report that a leucine-rich repeat receptor-like kinase (LRR-RLK), RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), is a key regulator of anther development in Arabidopsis. Two RPK2 T-DNA insertional mutants (rpk2-1 and rpk2-2) displayed enhanced shoot growth and male sterility due to defects in anther dehiscence and pollen maturation. The rpk2 anthers only developed three cell layers surrounding the male gametophyte: the middle layer was not differentiated from inner secondary parietal cells. Pollen mother cells in rpk2 anthers could undergo meiosis, but subsequent differentiation of microspores was inhibited by tapetum hypertrophy, with most resulting pollen grains exhibiting highly aggregated morphologies. The presence of tetrads and microspores in individual anthers was observed during microspore formation, indicating that the developmental homeostasis of rpk2 anther locules was disrupted. Anther locules were finally crushed without stomium breakage, a phenomenon that was possibly caused by inadequate thickening and lignification of the endothecium. Microarray analyses revealed that many genes encoding metabolic enzymes, including those involved in cell wall metabolism and lignin biosynthesis, were downregulated throughout anther development in rpk2 mutants. RPK2 mRNA was abundant in the tapetum of wild-type anthers during microspore maturation. These results suggest that RPK2 controls tapetal cell fate by triggering subsequent tapetum degradation, and that mutating RPK2 impairs normal pollen maturation and anther dehiscence due to disruption of key metabolic pathways.  相似文献   

12.
比较研究了烟草(Nicotiana tabacum L.)TA29-Barnase转基因不育植株和正常植株的花药绒毡层及花粉发育的全过程。研究表明,外源基因在花药中特异表达导致绒毡层细胞的提前降解,这种降解一般在减数分裂早期开始,至四分体时期完成,而正常花药绒毡层的降解发生在二细胞雄配子体初期,至花粉发育的后期方才完成。转基因植株花药绒毡层的降解在细胞结构上表现为:最初发生细胞的液泡化,然后细胞核凝聚,最后整个细胞溃解。转基因植株的花粉母细胞则在减数分裂过程中逐渐降解、退化,只有少数花粉母细胞能够顺利完成减数分裂发育成小孢子。观察结果还表明外源基因在花药中的表达是不均一的。对转基因不育和自然败育在细胞结构上的不同表现进行了讨论。  相似文献   

13.
To gain further insight into the abortive stages and ultrastructural changes leading to pollen degeneration of a novel cytoplasmic male sterile radish 805A, we compared differences of cellular and subcellular structure of sterile anther with fertile anther by light and electron microscopy analysis. Two types of locule degeneration in sterile anther were detected, of which the time of degeneration occurred and completed was different. In type I, abnormality of pollen mother cells (PMCs) and tapetal cells, including condensation of cytoplasm and large vacuoles within tapetal cells, was shown at PMC stage. In type II, meiosis and early tetrad stage progressed normally except for large vacuoles that appeared in tapetal cells. Ultrastructural alterations of the cellular organization were observed in the type II locules, such as chromatin condensation at the periphery of the nucleus and degeneration of the karyotheca, compared with normal pollen development. The results suggested that the cytoplasmic male sterility anther degeneration was probably caused by dysfunctions of tapetum and vacuolation of tapetum, PMCs, and microspores. Thus, the identical factors, which induced CMS in the same cytoplasmic and nuclear genetic background, might affect development of tapetum and microspore at different stages during the cytoplasmic male sterile 805A anther development.  相似文献   

14.
Anther and pollen development in male-fertile and male-sterile green onions was studied. In the male-fertile line, both meiotic microspore mother ceils and tetrads have a callose wall. Mature pollen grains are 2-celled. The elongated generative cell with two bended ends displays a PAS positive cell wall. The tapetum has the character of both secretory and invasive types. From microspore stage onwards, many oil bodies or masses accumulate in the cytoplasm of the tapetal cells. The tapetum degenerates at middle 2-celled pollen stage. In male-sterile line, meiosis in microspore mother cells proceeds normally to form the tetrads. Pollen abortion occurs at microspore with vacuole stage. Two types of pollen abortion were observed. In type I, the protoplasts of the microspores contract and gradually disintegrate. At the same time the cytoplasm of microspores accumulates oil bodies which remain in the empty pollen. The tapetal cells behave normally up to the microspore stage and early stage of microspore abortion, but contain fewer oil bodies or masses than those in the male-fertilt line. At late stage of microspore abortion, three forms of the tapetal ceils can be observed: (1) the tapetal cells with degenerating protoplasts become flattened, (2) the tapetal cells enlarge but protoplasts retractor, (3) the cells break down and tile middle layer enlarges. In type Ⅱ, the cytoplasm degenerates earlier than the nucleus of the microspores and no protoplast is found in the anther locule. There are fibrous thickenings iii the endothecium of both types. It is difficult to verify whether the tapetum behavior and pollen abortion is the cause or the effect.  相似文献   

15.
Rice Undeveloped Tapetum1 is a major regulator of early tapetum development   总被引:11,自引:0,他引:11  
Jung KH  Han MJ  Lee YS  Kim YW  Hwang I  Kim MJ  Kim YK  Nahm BH  An G 《The Plant cell》2005,17(10):2705-2722
  相似文献   

16.
17.
Pollen grains are encased by a multilayered, multifunctional wall. The sporopollenin and pollen coat constituents of the outer pollen wall (exine) are contributed by surrounding sporophytic tapetal cells. Because the biosynthesis and development of the exine occurs in the innermost cell layers of the anther, direct observations of this process are difficult. The objective of this study was to investigate the transport and assembly of exine components from tapetal cells to microspores in the intact anthers of Arabidopsis thaliana. Intrinsically fluorescent components of developing tapetum and microspores were imaged in intact, live anthers using two-photon microscopy. Mutants of ABCG26, which encodes an ATP binding cassette transporter required for exine formation, accumulated large fluorescent vacuoles in tapetal cells, with corresponding loss of fluorescence on microspores. These vacuolar inclusions were not observed in tapetal cells of double mutants of abcg26 and genes encoding the proposed sporopollenin polyketide biosynthetic metabolon (ACYL COENZYME A SYNTHETASE5, POLYKETIDE SYNTHASE A [PKSA], PKSB, and TETRAKETIDE α-PYRONE REDUCTASE1), providing a genetic link between transport by ABCG26 and polyketide biosynthesis. Genetic analysis also showed that hydroxycinnamoyl spermidines, known components of the pollen coat, were exported from tapeta prior to programmed cell death in the absence of polyketides, raising the possibility that they are incorporated into the exine prior to pollen coat deposition. We propose a model where ABCG26-exported polyketides traffic from tapetal cells to form the sporopollenin backbone, in coordination with the trafficking of additional constituents, prior to tapetum programmed cell death.  相似文献   

18.
The cytological development of microspores and tapetum in cytoplasmic male sterile (CMS) line A14 and its maintainer B14 in radish were studied using light- and transmission electron microscopy (LM and TEM). The microspores of the CMS line began to abort soon after they were released from tetrads in pollen sacs with light microscopy investigation, while abnormal behavior of pollen mother cells (PMC) were observed during its meiotic stage in its ultra-structural study, including degeneration of organelles and irregularity of nuclear membrane. At the same time, development of tapetal cells was similar to that of the maintainer. With further development of the anther, the tapetal cells of CMS line showed an abnormal increase in size and other appearances, such as fewer organelles and indistinct cytoplasm. The microspores of the CMS line were always distinguishable from the maintainer line with irregular structure, more osphilic deposits and abnormal exine. It is inferred that abortion of microspores is attributed to mutation of genes controlling male sterility, which further leads to hypertrophy of tapetum and destruction of ultra-structure.  相似文献   

19.
低温预处理影响水稻花药培养效率的机理初探   总被引:3,自引:0,他引:3  
低温预处理延缓药壁中层和绒毡层的降解,促进表皮层和药室内壁层的发育,延缓花药过氧化物酶同工酶活性的增强。处理期间花药可溶性蛋白质、淀粉酶同工酶潜带发生明显变化。处理期间花药的~3H-TdR渗入和花粉的发育、分裂,表明花粉存在合成和充实活动。绒毡层和花粉间存在囊泡,表皮层和药室内壁层之间存在多泡体的穿壁运动,说明低温处理中药壁向花粉输送雄核发育所需的物质。在进入正常培养初期,经过低温处理的花药药壁仍有表皮层和药室内壁层的发育,多细胞花粉出现提早、数量增加,花粉退化延缓。而未经处理的花药药壁各层均迅速降解,花粉大量退化。  相似文献   

20.
The DNA and histone content in the microsporocytes, microspores, generative and vegetative cells of the pollen grain of Lilium candidum L., as well as in the anther wall tissues, was estimated by double wavelength cytophotometry. The lack of histone, as compared with DNA content, was demonstrated in the microsporocytes at the late premeiotic interphase and early meiotic prophase, as well as in the young microspores and anther wall tissues. The analysis of hydrolysis curves suggests the increase of non-condensed chromatin during endothelial cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号