首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mushroom bodies (MBs) are prominent structures in the Drosophila brain that are essential for olfactory learning and memory. Characterization of the development and projection patterns of individual MB neurons will be important for elucidating their functions. Using mosaic analysis with a repressible cell marker (Lee, T. and Luo, L. (1999) Neuron 22, 451-461), we have positively marked the axons and dendrites of multicellular and single-cell mushroom body clones at specific developmental stages. Systematic clonal analysis demonstrates that a single mushroom body neuroblast sequentially generates at least three types of morphologically distinct neurons. Neurons projecting into the (gamma) lobe of the adult MB are born first, prior to the mid-3rd instar larval stage. Neurons projecting into the alpha' and beta' lobes are born between the mid-3rd instar larval stage and puparium formation. Finally, neurons projecting into the alpha and beta lobes are born after puparium formation. Visualization of individual MB neurons has also revealed how different neurons acquire their characteristic axon projections. During the larval stage, axons of all MB neurons bifurcate into both the dorsal and medial lobes. Shortly after puparium formation, larval MB neurons are selectively pruned according to birthdays. Degeneration of axon branches makes early-born gamma neurons retain only their main processes in the peduncle, which then project into the adult gamma lobe without bifurcation. In contrast, the basic axon projections of the later-born (alpha'/beta') larval neurons are preserved during metamorphosis. This study illustrates the cellular organization of mushroom bodies and the development of different MB neurons at the single cell level. It allows for future studies on the molecular mechanisms of mushroom body development.  相似文献   

2.
Memories are formed, stabilized in a time-dependent manner, and stored in neural networks. In Drosophila, retrieval of punitive and rewarded odor memories depends on output from mushroom body (MB) neurons, consistent with the idea that both types of memory are represented there. Dorsal Paired Medial (DPM) neurons innervate the mushroom bodies, and DPM neuron output is required for the stability of punished odor memory. Here we show that stable reward-odor memory is also DPM neuron dependent. DPM neuron expression of amnesiac (amn) in amn mutant flies restores wild-type memory. In addition, disrupting DPM neurotransmission between training and testing abolishes reward-odor memory, just as it does with punished memory. We further examined DPM-MB connectivity by overexpressing a DScam variant that reduces DPM neuron projections to the MB alpha, beta, and gamma lobes. DPM neurons that primarily project to MB alpha' and beta' lobes are capable of stabilizing punitive- and reward-odor memory, implying that both forms of memory have similar circuit requirements. Therefore, our results suggest that the fly employs the local DPM-MB circuit to stabilize punitive- and reward-odor memories and that stable aspects of both forms of memory may reside in mushroom body alpha' and beta' lobe neurons.  相似文献   

3.
Transgenic flies that can drive GAL4 expression under the control of the 7 kb 5'-region of the Drosophila Ca(2+)/calmodulin-dependent protein kinase II (dCaMKII) gene (dCaMKII-GAL4) were established. Characteristic features of this dCaMKII-GAL4 driven reporter expression were compatible with the endogenous dCaMKII expression pattern: The dCaMKII-GAL4 driven reporter gene was expressed preferentially in the central nervous system of the embryo and larvae. Reporter expression was also observed in the brain, thoracic ganglion, and gut of the adult. The whole-brain distribution and projections of dCaMKII-GAL4-expressing cells in the adults were visualized three-dimensionally by using UAS-linked reporter genes. Prominent signals of nuclear-localized beta-Gal reporter gene expression were found in extensive brain regions, especially in the Kenyon cells of the mushroom body (MB), cells in the pars intercerebralis, and subesophageal ganglion (SOG). tau reporter gene expression highlighting neurite projections was detected in the MB lobes, median bundle, antennal lobe glomeruli, and fibers of clusters in the SOG, ventrolateral protocerebrum and superior lateral protocerebrum. These observations agree with those of a previous study mapping the dCaMKII-dependent memory circuits in courtship conditioning. Interestingly, green fluorescent protein reporter gene expression in adult MB lobes was predominantly observed in the alpha and beta lobes with a core-deficient pattern, but not in the alpha' and beta' lobes, similar to Fasciclin II immunoreactivity.  相似文献   

4.
The aim of this study was to further reveal the organization of Kenyon cells in the mushroom body calyx and lobes of the male moth Spodoptera littoralis, by using immunocytochemical labeling. Subdivisions of the mushroom bodies were identified employing antisera raised against the amino acids taurine and aspartate, the neuropeptides FMRF-amide and Mas-allatotropin, and against the protein kinase A catalytic subunit DC0. These antisera have previously been shown to label subsets of Kenyon cells in other species. The present results show that the organization of the mushroom body lobes into discrete divisions, described from standard neuroanatomical methods, is confirmed by immunocytology and shown to be further elaborated. Anti-taurine labels the accessory Y-tract, the gamma division of the lobes, and a thin subdivision of the most posterior component of the lobes. Aspartate antiserum labels the entire mushroom body. FMRF-amide-like immunolabeling is pronounced in the gamma division and in the anterior perimeter of the alpha/beta and alpha'/beta' divisions. Mas-allatotropin-like immunolabeling shows the opposite of FMRF-amide-like and taurine-like immunolabeling: the gamma division and the accessory Y-system is immunonegative whereas strong labeling is seen in both the alpha/beta and alpha'/beta' divisions. The present results agree with findings from other insects that mushroom bodies are anatomically divided into discrete parallel units. Functional and developmental implications of this organization are discussed.  相似文献   

5.
Ptpmeg is a cytoplasmic tyrosine phosphatase containing FERM and PDZ domains. Drosophila Ptpmeg and its vertebrate homologs PTPN3 and PTPN4 are expressed in the nervous system, but their developmental functions have been unknown. We found that ptpmeg is involved in neuronal circuit formation in the Drosophila central brain, regulating both the establishment and the stabilization of axonal projection patterns. In ptpmeg mutants, mushroom body (MB) axon branches are elaborated normally, but the projection patterns in many hemispheres become progressively abnormal as the animals reach adulthood. The two branches of MB alpha/beta neurons are affected by ptpmeg in different ways; ptpmeg activity inhibits alpha lobe branch retraction while preventing beta lobe branch overextension. The phosphatase activity of Ptpmeg is essential for both alpha and beta lobe formation, but the FERM domain is required only for preventing alpha lobe retraction, suggesting that Ptpmeg has distinct roles in regulating the formation of alpha and beta lobes. ptpmeg is also important for the formation of the ellipsoid body (EB), where it influences the pathfinding of EB axons. ptpmeg function in neurons is sufficient to support normal wiring of both the EB and MB. However, ptpmeg does not act in either MB or EB neurons, implicating ptpmeg in the regulation of cell-cell signaling events that control the behavior of these axons.  相似文献   

6.
The membrane-skeleton of adult chicken neurons in the cerebellum and optic system is composed of polypeptides structurally and functionally related to the erythroid proteins spectrin and ankyrin, respectively. Neuronal spectrin comprises two distinct complexes that share a common alpha subunit (Mr 240,000) but which have structurally distinct polymorphic subunits (beta' beta spectrin; Mr 220/225,000; gamma spectrin, Mr 235,000); the brain-specific form (alpha gamma spectrin or fodrin) and an erythrocyte-specific form (alpha beta' beta spectrin). Two structurally related isoforms of ankyrin have also been identified and are termed alpha (Mr 260,000) and beta (Mr 237,000) ankyrin. Immunofluorescence demonstrates that the variants of spectrin and ankyrin, respectively, have different distributions within neurons. On the one hand, alpha gamma spectrin and beta ankyrin are present throughout the neuron, in the perikaryon, dendrites, and axon, whereas alpha beta' spectrin and alpha ankyrin are localized exclusively in the perikaryon and dendrites where they are actively segregated from alpha gamma spectrin and other components of axonal transport. This asymmetric distribution of spectrin and ankyrin isoforms is established in distinct stages during neuronal morphogenesis. Early in cerebellar and retinal development, alpha gamma spectrin is expressed in mitotic cells. Subsequently beta ankyrin and alpha gamma spectrin are coexpressed in postmitotic cells and gradually accumulate on the plasma membrane in a uniform pattern throughout the neuron during the phase of cell growth. At the onset of synaptogenesis and the cessation of cell growth, their levels of synthesis decline sharply while the assembled proteins remained as stable membrane components. Concomitantly, there is a dramatic induction in the accumulation of alpha ankyrin and alpha beta' spectrin, whose assembly is limited to the plasma membrane of the perikarya and dendrites. These results demonstrate that two successive, developmentally regulated programs of ankyrin and spectrin expression and patterning on the plasma membrane are involved in the assembly of the spectrin-based asymmetry in the neuronal membrane-skeleton, and that their asymmetric distribution is actively maintained throughout the life of the neuron.  相似文献   

7.
An analysis of 6-phosphofructokinase from brewers' yeast in the presence of sodium dodecylsulfate reveals the occurrence of four components with the following molecular weights: alpha = 140000, beta = 130000, and alpha' = 92000, beta' = 87000. It was found that the alpha- and beta-components can be converted to the alpha' and beta' components by treatment of the native preparation with hyaluronidase. A comparison of the molecular weight obtained by ultracentrifugation and gel filtration with the results obtained by dodecylsulfate electrophoresis after treatment with hyaluronidase reveals that the alpha' and beta' components are the smallest molecular structures obtained upon dissociation of the native enzyme. The mechanism of action of hyaluronidase suggests a desensitization of the alpha and beta components of the enzyme towards dodecylsulfate. Thus, in the absence of hyaluronidase treatment; only an apparent molecular weight for the alpha and beta component is obtained. The analysis indicates that the native enzyme might be composed of four different subunits with an alpha, beta, alpha' and beta' configuration. It is not excluded that the native enzyme consists only of alpha- and beta-chains.  相似文献   

8.
The Mo-Fe protein of Azotobacter vinelandii nitrogenase was fractionated on 9.5 M urea isoelectric focusing gels and gave three distinct bands (alpha', alpha", beta'). Protein focused on nondenaturing gels gave a single brown band, which when excised and refocused on a denaturing gel gave the three-band pattern. Partial trypsin digestion of the subunits and fractionation of the peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the alpha' and alpha" polypeptide moieties were the same. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the alpha' and beta' proteins with appropriate molecular weight standards indicated Mr = 61,000 and 57,000, respectively. This is consistent with an overall alpha 2 beta 2 mass of 236,000 daltons.  相似文献   

9.
Neural circuits are often remodeled after initial connections are established. The mechanisms by which remodeling occurs, in particular whether and how synaptically connected neurons coordinate their reorganization, are poorly understood. In Drosophila, olfactory projection neurons (PNs) receive input by synapsing with olfactory receptor neurons in the antennal lobe and relay information to the mushroom body (MB) calyx and lateral horn. Here we show that embryonic-born PNs participate in both the larval and adult olfactory circuits. In the larva, these neurons generally innervate a single glomerulus in the antennal lobe and one or two glomerulus-like substructures in the MB calyx. They persist in the adult olfactory circuit and are prespecified by birth order to innervate a subset of glomeruli distinct from larval-born PNs. Developmental studies indicate that these neurons undergo stereotyped pruning of their dendrites and axon terminal branches locally during early metamorphosis. Electron microscopy analysis reveals that these PNs synapse with MB gamma neurons in the larval calyx and that these synaptic profiles are engulfed by glia during early metamorphosis. As with MB gamma neurons, PN pruning requires cell-autonomous reception of the nuclear hormone ecdysone. Thus, these synaptic partners are independently programmed to prune their dendrites and axons.  相似文献   

10.
The insect mushroom bodies play important roles in a number of higher processing functions such as sensory integration, higher level olfactory processing, and spatial and associative learning and memory. These functions have been established through studies in a handful of tractable model systems, of which only the fruit fly Drosophila melanogaster has been readily amenable to genetic manipulations. The red flour beetle Tribolium castaneum has a sequenced genome and has been subject to the development of molecular tools for the ready manipulation of gene expression; however, little is known about the development and organization of the mushroom bodies of this insect. The present account bridges this gap by demonstrating that the organization of the Tribolium mushroom bodies is strikingly like that of the fruit fly, with the significant exception that the timeline of neurogenesis is shifted so that the last population of Kenyon cells is born entirely after adult eclosion. Tribolium Kenyon cells are generated by two large neuroblasts per hemisphere and segregate into an early-born delta lobe subpopulation followed by clear homologs of the Drosophila gamma, alpha'/beta' and alpha/beta lobe subpopulations, with the larval-born cohorts undergoing dendritic reorganization during metamorphosis. BrdU labeling and immunohistochemical staining also reveal that a proportion of individual Tribolium have variable numbers of mushroom body neuroblasts. If heritable, this variation represents a unique opportunity for further studies of the genetic control of brain region size through the control of neuroblast number and cell cycle dynamics.  相似文献   

11.
Characterization of the subunits of beta-conglycinin   总被引:4,自引:0,他引:4  
Four subunits of beta-conglycinin were purified from soybean cultivar CX 635-1-1-1, and were designated alpha, alpha', beta, and beta' in accordance with nomenclature proposed by Thanh and Shibasaki [(1977) Biochim. Biophys. Acta 490, 370-384]. Of these subunits, beta' has not previously been reported or characterized. Consistent with the low levels of methionine in these proteins, cyanogen bromide cleavage of alpha', alpha, and beta' subunits produced only a few fragments. The beta subunit contains no methionine and was not cleaved by cyanogen bromide. The NH2-terminal amino acid sequences of the alpha and alpha' subunits are homologous, and each has valine at its amino terminus. The beta subunit has a very different NH2-terminal sequence from those of the alpha and alpha' subunits, and has leucine at its amino terminus. The NH2-terminal sequence of the beta' subunit could not be determined, as it appeared to be blocked to Edman degradation. Although alpha and alpha' subunits have similar NH2-terminal sequences, they differ in the number of methionine residues and so yielded different numbers of cyanogen bromide fragments. Two cyanogen bromide fragments (CB-1 and CB-2) were purified from the alpha subunit. CB-1 originated from the NH2-terminal end of the subunit. The amino acid sequence of CB-2 was identical to that predicted from the nucleotide sequence of cDNA clone pB36. The insert in pB36 encoded 216 amino acids from the COOH-terminal end of the alpha subunit and contained a 138-bp trailer sequence which was followed by a poly-(A) tail. Maps showing the relative positions of methionine residues and carbohydrate moieties in the alpha and alpha' subunits were drawn, based on primary sequence data, and the size and carbohydrate content of the CNBr fragments derived from the subunits.  相似文献   

12.
Casein kinase II (CKII) is composed of a catalytic (alpha) and a regulatory (beta) subunit which unite to form an alpha 2 beta 2 holoenzyme. Saccharomyces cerevisiae CKII consists of two distinct catalytic (Sc alpha and Sc alpha') and regulatory (Sc beta and Sc beta') subunits. Simultaneous disruption of the CKA1 and CKA2 genes (encoding the alpha and alpha' subunits, respectively) is lethal. Such double disruptions can be rescued by GAL1, 10-induced expression of the Drosophila alpha and beta subunits (Dm alpha+beta) together or by GAL10-induced expression of the Drosophila alpha subunit (Dm alpha) alone (Padmanabha, R., Chen-Wu, J. L.-P., Hanna, D. E., and Glover, C. V. C. (1990) Mol. Cell. Biol. 10, 4089-4099). Here we report quantitation, purification, and characterization of casein kinase II activity from such rescued strains. Casein kinase II activity from a strain rescued by Dm alpha alone purifies as a free, catalytically active alpha subunit monomer, whereas that from a strain rescued by Dm alpha/beta purifies as a mixture of tetrameric holoenzyme and monomeric alpha subunit. Interestingly, neither Sc beta nor Sc beta' is present at detectable levels in the enzyme obtained from either strain, raising the possibility that rescue by Dm alpha alone may be mediated via the free, monomeric catalytic subunit. Overexpression of total casein kinase II activity from 6- to 18-fold is not toxic and indeed has no overt phenotypic consequences. Production of large amounts of free catalytic subunit also appears to be without effect, even though free catalytic subunit is normally undetectable in S. cerevisiae.  相似文献   

13.
The GTP-induced dissociation of T alpha from T beta gamma initiates the release of transducin from photolyzed rhodopsin and the subsequent activation of the cGMP phosphodiesterase. In this study, site-specific proteolysis and immunoprecipitation were used to map the domain of T alpha that interacts with T beta gamma. We found that Staphylococcus aureus V8 protease rapidly removes a small fragment from T alpha under native conditions, resulting in the formation of a single 38-kDa polypeptide (T alpha'). Under the same conditions, T beta gamma remains intact. A 4.5-fold decrease in the rate of T alpha cleavage by S. aureus protease was observed in the presence of T beta gamma, suggesting T beta gamma binding blocks the protease-sensitive site on T alpha. Amino acid sequence analysis indicated that T alpha' is derived from the cleavage of T alpha at Glu-21. The ability of T alpha' to interact with and activate the retinal phosphodiesterase is not diminished. However, T alpha' is unable to participate in T beta gamma-dependent activities such as the light-stimulated binding of guanine nucleotides, binding to photoexcited rhodopsin, and ADP-ribosylation catalyzed by pertussis toxin. Moreover, the anti-T alpha monoclonal antibody TF16 was able to precipitate T beta gamma in the presence of T alpha, but not with either T alpha' or T alpha-guanosine 5'-O-(3-thiotriphosphate). We conclude that the amino-terminal region of T alpha participates in T beta gamma interaction and discuss our results with respect to the known structure and function of transducin.  相似文献   

14.
In chicken, the main characteristic properties of muscle fibre types in slow anterior (ALD) and fast posterior (PLD) latissimus dorsii are acquired during post-hatching development. At day 4 it becomes possible to distinguish between alpha' and beta' fibre types in ALD muscle. At the same time, mATPase staining and NADH-TR activity permit recognition of alpha w and alpha R fibres within PLD muscle. During further development, muscle fibre typology progressively changes towards the adult slow and fast type. Chronic stimulation at a slow rhythm (5 Hz) of PLD prevents the change in relative proportions of alpha R and alpha W fibres within the muscle that occurs in normal post-hatching development and increases the number of beta R fibres. Moreover, oxidative activity is increased in all muscle fibre types following stimulation. In ALD muscle, chronic stimulation at a fast rhythm (40 Hz) results in a decrease in oxidative activity and inhibits the differentiation of alpha' and beta' muscle fibre types. This study demonstrates that in young chicken, the pattern of activity influences the differenciation of fibre types in slow and fast muscles.  相似文献   

15.
Silk gland elongation factor 1 (EF-1) consists of four subunits: alpha, beta, beta', and gamma. EF-1 beta beta' gamma catalyzes the exchange of GDP for GTP on EF-1 alpha and stimulates the binding of EF-1 alpha-dependent aminoacyl-tRNA to ribosomes. The carboxy-terminal regions of the EF-1 beta subunits from various species are highly conserved. We examined the region of EF-1 beta' that binds to EF-1 alpha by in vitro binding assays, and examined the GDP/GTP exchange activity using deletion mutants of a GST-EF1 beta' fusion protein. We thereby suggested a pivotal amino acid region, residues 189-222, of EF-1 beta' for binding to EF-1 alpha.  相似文献   

16.
Yeast phosphofructokinase having a molecular weight of 750000--800000 (20 S) has been subjected to limited proteolysis by subtilisin and yeast proteases. Two steps of proteolytic degradation could be distinguished: in the first step, which is accompanied by an increase in molecular activity, the subunits alpha and beta (Mr 120000) are converted to alpha' and beta' (Mr approximately 900000), and in the second step, accompanied by a decrease in enzyme activity, alpha' is converted to alpha' (Mr 80000) and two further fragments having Mr 45000 and 35000 become detectable. In the course of the conversion the sedimentation value of the undissociated enzyme drops from 20 S to about 17 S. The two substrates fructose 6-phosphate and ATP exhibit characteristic protective effects on enzyme activity and on subunit degradation. Whereas the first step is not strongly influenced by the substrates, fructose, 6-phosphate inhibits significantly the degradation of alpha' and beta', whereas ATP prevents only degradation of beta'. When in presence of ATP alpha' is degraded to alpha', the quaternary structure of the 17-S enzyme is no longer stable and a dissociation of the molecule occurs to a 12-S form which is enzymically active and ATP-sensitive and in which the ratio of alpha' to beta' is one-to-one.  相似文献   

17.
Native pig brain tubulin in heterodimer or polymer form was subjected to limited proteolysis by subtilisin, which is known to cleave at accessible sites within the last 50 amino acids of the highly variable carboxyl-termini of the alpha and beta subunits. Heterodimeric tubulin or tubulin polymerized in the presence of 4 M glycerol or taxol was used in these experiments. Digested tubulin was purified by cycles of polymerization and depolymerization, ammonium sulfate precipitation, or ion-exchange chromatography in the absence or presence of nonionic detergent; however, smaller cleaved products of about 34,000 to 40,000 MW remained associated with the major cleaved subunits, alpha' and beta', under all purification conditions. In order to determine the effect of subtilisin cleavage on tubulin heterogeneity, purified native or subtilisin-cleaved tubulin was subjected to isoelectric focusing, followed by SDS-PAGE. The total number of isotypes was reduced from 17-22 for native alpha,beta tubulin to 7-9 for subtilisin-cleaved alpha',beta' tubulin. When tubulin heterodimers were cleaved, a single major beta' isotype was evident; however, when tubulin polymerized in 4 M glycerol was cleaved, two major beta' isotypes were found. Monoclonal antibodies that recognize a beta carboxyl-terminal peptide, residues 410-430, reacted with both major beta' isotypes, indicating that subtilisin cleavage occurred within the last 20 of the 450 amino acids. In order to establish whether this difference was in fact associated with polymer or heterodimer forms of tubulin, digestion was carried out in the presence of taxol, which stabilizes tubulin polymers. A single major beta' isotype different from the cleaved heterodimer, but coincident with one of the bands of the cleaved glycerol-induced polymers, was found when taxol-treated tubulin was digested. This result suggests the presence of more than one subtilisin site in the beta subunit, near residues 430-435, with different accessibility to the enzyme in the heterodimer and polymer form.  相似文献   

18.
Histochemical differentiation of the chick anterior latissimus dorsi (ALD) muscle was studied during embryonic development and after hatching. The two types of adult ALD tonic fibres (alpha' and beta') differentiate from a pool of acid and alkali-stable myofibrillar ATPase fibres. Intermediate stages of the transformation from beta' to alpha' were observed. At all developmental stages studied, a low percentage of formalin-resistant, alkali-stable and acid-labile ATPase fibres were observed. Such fibres have the histochemical properties of the alpha R or fast oxidative-glycolytic fibres and are assumed to be focally innervated.  相似文献   

19.
20.
In the adult I/LnJ mouse skeletal muscle, phosphorylase kinase activity is 0.2% of that in normal. This deficiency results from a paucity of mRNA's for the phosphorylase kinase regulatory subunit- alpha and its isoform alpha'. However, in the I/LnJ neonatal skeletal muscle phosphorylase kinase activity is 20-25% of that in normal. During the first two months of development this activity decreases while in normal tissue it increases. The developmental differences in the magnitude of the I/LnJ deficiency indicate the possibility of stage specific mechanisms regulating the accumulation of alpha/alpha' mRNAs. To investigate this possibility, the abundance of alpha/alpha' mRNAs and of the catalytic subunit, gamma, mRNAs were compared by Northern Blot analysis. The results demonstrate that neonatal and adult I/LnJ skeletal muscle have a similar paucity of alpha/alpha' mRNAs whereas accumulation of gamma mRNAs is not significantly different from normal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号