首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Floren  Andreas  Linsenmair  K. Eduard 《Plant Ecology》2001,153(1-2):153-167
In the framework of our research, aimed at understanding the processes structuring tropical arthropod communities, we investigated the changes occurring in tree crown communities of forests of different disturbance levels. These were a mixed dipterocarp primary lowland rain forest in Kinabalu National Park (in Sabah, Malaysia) and, some kilometres away, three forests of regeneration periods 5, 15, and 40 years following a clear-cut. These disturbed forest sites were adjacent to one another and merged into mature forest. From each forest at least ten individuals of one tree species were sampled using the fogging method. In the primary forest relative proportions of some arthropod taxa differed on the ordinal and familial level significantly within trees. The dominance of Formicidae was characteristic as was the almost complete lack of less mobile arthropods such as Lepidoptera larvae. In the five-year- old forest, differences in relative proportions among most taxa had almost disappeared. Formicidae abundances had declined drastically which coincided with an increase of Lepidoptera larvae. With progressing forest succession, arthropod communities increasingly converged on the pattern of primary forest, and total ant abundance as well as diversity increased significantly. Ant communities in the most disturbed forest were of low structural complexity, and to a large degree predictable in species arrangement, but became more and more unpredictable as the complexity of the forest increased. Several species of Coleoptera and non-formicine Hymenoptera occurred in high numbers in the youngest forest, contrasting with the mature forest where all species were typically rare. These changes may indicate a change in the structuring mechanisms from predominantly deterministic processes in disturbed forests to stochastic processes in mature forest.  相似文献   

2.
The influence of natural enemies has led to the evolution of various predator avoidance strategies in herbivorous insects. Many caterpillars are exclusively active at night and rest during the day. It is widely assumed that nocturnal activity in caterpillars reduces their risk of falling prey to their natural enemies. To test this hypothesis, we compared predation pressure between day and night in tree‐fall gaps and closed‐canopy forest sites in an Amazonian primary lowland rainforest. Artificial clay caterpillars, showing camouflaged colouration (green), were exposed as potential prey to a natural predator community. Attacks were significantly more frequent during daytime and were reduced by about a quarter at night in tree‐fall gaps, and by a third in closed‐canopy forest sites. This supports the idea of time‐dependent activity in caterpillars as an antipredatory adaptation. Further, independent of the time of day, predation pressure on caterpillars was significantly higher in tree‐fall gaps compared to closed‐canopy forest habitats. Nearly all predation events were caused by arthropods, whereas birds played a negligible role. Across both habitat types and time scales, ants acted as major predator group, emphasising their important role in population control of herbivorous insects in lowland rainforest ecosystems. This is the first experimental study using artificial caterpillars to examine whether time‐scheduling of exposition might influence predation risk amongst undefended, solitary, free‐living lepidopteran larvae.  相似文献   

3.
4.
In tropical rain forests, high canopy trees have diverse and abundant populations of ants and spiders. However, accessing high trees and their fauna remains difficult; thus, how ants and spiders interact in the canopy remains unclear. To better understand the interspecific interactions between these two dominant arthropod groups, we investigated their spatial distributions at the canopy surface in a tropical rain forest in Borneo. We sampled ants and spiders six times between 2009 and 2011 by sweeping with an insect net at the tree crown surfaces of 190 emergent or tall (≥20 m in height) trees. We collected 438 ant individuals belonging to 94 species and 1850 spider individuals (1630 juveniles and 220 adults) belonging to 142 morphospecies (adults only) from a total of 976 samples. The fact that we collected four times more spider individuals than ant individuals suggests that fewer ants forage at the tree crown surface than previously thought. The number of spider individuals negatively correlated with the number of ant individuals and the number of ant species, indicating significant exclusivity between ant and spider spatial distributions at the tree crown surface. Niche‐overlap between the two taxa confirmed this observation. Although our data do not address the causes of these spatial distributions, antagonistic interspecific interactions such as interference behaviors and intra‐guild predation are ecological mechanisms that give rise to exclusive spatial distributions.  相似文献   

5.
  • 1 Ants can have a range of effects on arthropods in crops, including suppressing herbivores such as caterpillars. However, ants can also increase hemipteran densities while reducing natural enemy numbers. In vineyard ecosystem, the effects of native ants and their interactions with other arthropods are poorly understood.
  • 2 An ant‐exclusion experiment was designed to test the impact of native ants on both canopy and ground arthropods concurrently. The potential influence of ants on predation and parasitism of light brown apple moth (LBAM) eggs, a grape pest, was also examined. Adult grapevine scale insects and earwigs under bark were counted after a season of ant‐exclusion.
  • 3 Among 23 ground ant species collected, six were found to forage in the canopy, with two Iridomyrmex species being the most commonly encountered.
  • 4 There was no difference in the abundance of most arthropod orders and feeding groups between ant‐excluded and control vines, although ground spiders were more abundant under ant‐excluded vines, despite increased ground ant foraging pressure. LBAM egg parasitism and predation were low and probably affected by weather and other arthropods. Ant exclusion did not reduce survival of scale insects, although the distribution and abundance of scale insects were negatively associated with earwigs.
  • 5 In conclusion, native ants did not consistently suppress arthropod assemblages, including natural enemies, and they did not promote the survival of scale insects. Interactions among native ant species within a vineyard might minimize their effects on other arthropods, although this needs further study.
  相似文献   

6.
The physical characteristics of habitats shape local community structure; a classic example is the positive relationship between the size of insular habitats and species richness. Despite the high density and proximity of tree crowns in forests, trees are insular habitats for some taxa. Specifically, crown isolation (i.e. crown shyness) prevents the movement of small cursorial animals among trees. Here, we tested the hypothesis that the species richness of ants (Sa) in individual, isolated trees embedded within tropical forest canopies increases with tree size. We predicted that this pattern disappears when trees are connected by lianas (woody vines) or when strong interactions among ant species determine tree occupancy. We surveyed the resident ants of 213 tree crowns in lowland tropical forest of Panama. On average, 9.2 (range = 2–20) ant species occupied a single tree crown. Average (± SE) Sa was ca 25% higher in trees with lianas (10.2 ± 0.26) than trees lacking lianas (8.0 ± 0.51). Sa increased with tree size in liana‐free trees (Sa = 10.99A0.256), but not in trees with lianas. Ant species composition also differed between trees with and without lianas. Specifically, ant species with solitary foragers occurred more frequently in trees with lianas. The mosaic‐like pattern of species co‐occurrence observed in other arboreal ant communities was not found in this forest. Collectively, the results of this study indicate that lianas play an important role in shaping the local community structure of arboreal ants by overcoming the insular nature of tree crowns.  相似文献   

7.
西双版纳青梅林的群落学研究   总被引:13,自引:1,他引:12  
朱华   《广西植物》1993,13(1):48-60
本文对分布在西双版纳勐腊县南部以龙脑香科植物版纳青梅为标志树种的热带森林作了群落学分析,认为它具有热带雨林的结构和基本特征,在性质上属于热带季节雨林。由于分布海拔偏高和生境特殊,它的上层乔木几乎常绿,在外貌上与望天树林和本地区典型的季节雨林有一定差异,在区系组成上向山地雨林过渡,它表现为一种季节雨林向山地雨林过渡的类型,同时也是一种热带北缘地区季节雨林的海拔极限类型。  相似文献   

8.
Biologists are still trying to grasp the global dimensions of the phylum Arthropoda and its major class the Insecta, in spite of the fact that over a million species of arthropods have been described. The canopy of rain forest trees is believed by many to hold the key to the immense diversity of insects. In recent years the use of knock-down insecticides to sample insects from rain forest canopy has revealed information on the canopy's arthropod inhabitants and community structure. The sampling techniques involved are outlined and data reviewed on taxonomic and guild structure, species abundance, body size and biomass of insects, and the faunal similarity of trees. Calculations by Erwin (1982), based on knock-down insecticide studies of the beetle fauna of one species of Central American tree, suggest there may be 30 million species of tropical forest arthropods. Reanalysis of these calculations, using additional data, produces a range of possible estimates from about 10 to 80 million. The unknown range of plant host-specificities of tropical insects is the main weakness of this method of calculation. Assessment of the faunal importance of the canopy in relation to that of other rain forest biotopes requires comparative quantitative studies. The preliminary results of one such simple study suggest that over 42 million arthropods may be found in a hectare of Seram rain forest (at the time of study), and that 70% occur in the soil and leaf litter and 14% in the canopy. They also suggest that Collembola and Acarina are the dominant groups in this hectare, and that there are as many ants as all the other insects (excluding Collembola).  相似文献   

9.
This paper describes the ant assemblages sampled from rain forest canopies ranging from southern Victoria through to Cape York Peninsula, Australia, and also in Brunei. Specifically, it examines the influence of decreasing latitude and variations in elevation on the character, richness, and abundance of the arboreal rain forest ant fauna, and also the relative contribution of ants to the total arthropod community. The sites that were examined included: cool temperate Nothofagus cunninghamii forest from a range of locations in Victoria; cool temperate N. moorei forest at both Werrikimbe and Styx River, New South Wales; notophyll vine forest in Lamington National Park, southeast Queensland; high elevation notophyll vine forest in Eungella National Park, central Queensland; complex notophyll vine forest at Robson Creek, Atherton Tablelands, north Queensland; complex mesophyll vine forest at Cape Tribulation, north Queensland; and mixed dipterocarp forest in Brunei. Although these sites represent a gradient increasingly tropical in character, botanically speaking, Eungella is less tropical than Lamington because of its high elevation. All samples were obtained by fogging the canopy with a rapid‐knockdown pyrethrin pesticide. In all cases, circular funnels were suspended beneath the foliage of individual trees or small plots of mixed canopy. Arthropods were collected four hours after fogging. Following ordinal sorting, ants were identified and counted to morphospecies level. The resulting catch were then standardized across sites as numbers caught per 0.5 m2 sampling funnel. Generic and species richness were higher at the lowland tropical Cape Tribulation sites than at the sites to the south and was comparable with values in the Brunei site. Species richness was negatively correlated with latitude and elevation. Within the Australian rain forest, the lowland/highland break appears to be the strongest predictor of ant relative abundance, with a weaker latitudinal relationship superimposed.  相似文献   

10.
1. Epigeic ants are functionally important arthropods in tropical and subtropical forests, particularly by acting as predators. High predation pressure has been hypothesised to be a mechanism facilitating high diversity across trophic levels. 2. In this study, standardised pitfall traps were used in a highly diverse subtropical forest to test if and how ant species richness is related to tree species richness and a comprehensive set of other environmental variables such as successional age, soil properties or elevation. 3. A total of 13 441 ant individuals belonging to 3839 species occurrences and 71 species were collected, of which 26 species were exclusive predators and 45 species were omnivores. 4. Occurrence and species richness of total and omnivore ants were positively related to soil pH. Predator ant occurrence was unrelated to all environmental variables tested. 5. The species richness of predator ants increased with tree species richness but decreased with leaf functional diversity and shrub cover. Elevation negatively influenced only total ant species richness. 6. The evenness of predators increased with tree species richness, while the evenness of all ants decreased with shrub cover. Omnivore ant evenness decreased with tree evenness, but increased with successional age. 7. The results highlight the value of diverse forests in maintaining species richness and community evenness of a functionally important predator group. Moreover, the results stress the importance of analysing trophic groups separately when investigating biodiversity effects.  相似文献   

11.
Tropical canopies are known for their high abundance and diversity of ants. However, the factors which enable coexistence of so many species in trees, and in particular, the role of foragers in determining local diversity, are not well understood. We censused nesting and foraging arboreal ant communities in two 0.32 ha plots of primary and secondary lowland rainforest in New Guinea and explored their species diversity and composition. Null models were used to test if the records of species foraging (but not nesting) in a tree were dependent on the spatial distribution of nests in surrounding trees. In total, 102 ant species from 389 trees occurred in the primary plot compared with only 50 species from 295 trees in the secondary forest plot. However, there was only a small difference in mean ant richness per tree between primary and secondary forest (3.8 and 3.3 sp. respectively) and considerably lower richness per tree was found only when nests were considered (1.5 sp. in both forests). About half of foraging individuals collected in a tree belonged to species which were not nesting in that tree. Null models showed that the ants foraging but not nesting in a tree are more likely to nest in nearby trees than would be expected at random. The effects of both forest stage and tree size traits were similar regardless of whether only foragers, only nests, or both datasets combined were considered. However, relative abundance distributions of species differed between foraging and nesting communities. The primary forest plot was dominated by native ant species, whereas invasive species were common in secondary forest. This study demonstrates the high contribution of foragers to arboreal ant diversity, indicating an important role of connectivity between trees, and also highlights the importance of primary vegetation for the conservation of native ant communities.  相似文献   

12.
It has been argued that canopy trees in tropical rainforests harbor species-rich ant assemblages; however, how ants partition the space on trees has not been adequately elucidated. Therefore, we investigated within-tree distributions of nest sites and foraging areas of individual ant colonies on canopy trees in a tropical lowland rainforest in Southeast Asia. The species diversity and colony abundance of ants were both significantly greater in crowns than on trunks. The concentration of ant species and colonies in the tree crown seemed to be associated with greater variation in nest cavity type in the crown, compared to the trunk. For ants nesting on canopy trees, the numbers of colonies and species were both higher for ants foraging only during the daytime than for those foraging at night. Similarly, for ants foraging on canopy trees, both values were higher for ants foraging only during the daytime than for those foraging at night. For most ant colonies nesting on canopy trees, foraging areas were limited to nearby nests and within the same type of microhabitat (within-tree position). All ants foraging on canopy trees in the daytime nested on canopy trees, whereas some ants foraging on the canopy trees at night nested on the ground. These results suggest that spatial partitioning by ant assemblages on canopy trees in tropical rainforests is affected by microenvironmental heterogeneity generated by three-dimensional structures (e.g., trees, epiphytes, lianas, and aerial soils) in the crowns of canopy trees. Furthermore, ant diversity appears to be enriched by both temporal (diel) and fine-scale spatial partitioning of foraging activity.  相似文献   

13.
The ongoing destruction of tropical rainforests has increased the interest in the potential value of tropical agroforests for the conservation of biodiversity. Traditional, shaded agroforests may support high levels of biodiversity, for some groups even approaching that of undisturbed tropical forests. However, it is unclear to what extent forest fauna is represented in this diversity and how management affects forest fauna in agroforests. We studied lower canopy ant and beetle fauna in cacao agroforests and forests in Central Sulawesi, Indonesia, a region dominated by cacao agroforestry. We compared ant and beetle species richness and composition in forests and cacao agroforests and studied the impact of two aspects of management intensification (the decrease in shade tree diversity and in shade canopy cover) on ant and beetle diversity. The agroforests had three types of shade that represented a decrease in tree diversity (high, intermediate and low diversity). Species richness of ants and beetles in the canopies of the cacao trees was similar to that found in lower canopy forest trees. However, the composition of ant and beetle communities differed greatly between the agroforest and forest sites. Forest beetles suffered profoundly from the conversion to agroforests: only 12.5% of the beetle species recorded in the forest sites were also found in the agroforests and those species made up only 5% of all beetles collected from cacao. In contrast, forest ants were well represented in agroforests, with 75% of all species encountered in the forest sites also occurring on cacao. The reduction of shade tree diversity had no negative effect on ants and beetles on cacao trees. Beetle abundances and non-forest ant species richness even increased with decreasing shade tree diversity. Thinning of the shade canopy was related to a decrease in richness of forest ant species on cacao trees but not of beetles. The contrasting responses of ants and beetles to shade tree management emphasize that conservation plans that focus on one taxonomic group may not work for others. Overall ant and beetle diversity can remain high in shaded agroforests but the conservation of forest ants and beetles in particular depends primarily on the protection of natural forests, which for forest ants can be complemented by the conservation of adjacent shaded cacao agroforests.  相似文献   

14.
1.?Species diversity of arboreal arthropods tends to increase during rainforest succession so that primary forest communities comprise more species than those from secondary vegetation, but it is not well understood why. Primary forests differ from secondary forests in a wide array of factors whose relative impacts on arthropod diversity have not yet been quantified. 2.?We assessed the effects of succession-related determinants on a keystone ecological group, arboreal ants, by conducting a complete census of 1332 ant nests from all trees with diameter at breast height?≥?5?cm occurring within two (unreplicated) 0·32-ha plots, one in primary and one in secondary lowland forest in New Guinea. Specifically, we used a novel rarefaction-based approach to match number, size distribution and taxonomic structure of trees in primary forest communities to those in secondary forest and compared the resulting numbers of ant species. 3.?In total, we recorded 80 nesting ant species from 389 trees in primary forest but only 42 species from 295 trees in secondary forest. The two habitats did not differ in the mean number of ant species per tree or in the relationship between ant diversity and tree size. However, the between-tree similarity of ant communities was higher in secondary forest than in primary forest, as was the between-tree nest site similarity, suggesting that secondary trees were more uniform in providing nesting microhabitats. 4.?Using our rarefaction method, the difference in ant species richness between two forest types was partitioned according to the effects of higher tree density (22·6%), larger tree size (15·5%) and higher taxonomic diversity of trees (14·3%) in primary than in secondary forest. The remaining difference (47·6%) was because of higher beta diversity of ant communities between primary forest trees. In contrast, difference in nest density was explained solely by difference in tree density. 5.?Our study shows that reduction in plant taxonomic diversity in secondary forests is not the main driver of the reduction in canopy ant species richness. We suggest that the majority of arboreal species losses in secondary tropical forests are attributable to simpler vegetation structure, combined with lower turnover of nesting microhabitats between trees.  相似文献   

15.
Climate change is predicted to impact tropical rain forests, with droughts becoming more frequent and more severe in some regions. We currently have a poor understanding of how increased drought will change the functioning of tropical rain forest. In particular, tropical rain forest invertebrates, which are numerous and biologically important, may respond to drought in different ways across trophic levels. Ants are a diverse group that carry out important ecosystem processes, shaping ecosystem structure and function through predation and competition, which can influence multiple trophic levels. Hemiptera are a mega-diverse order, abundant in tropical rain forests and are ecologically important. To understand the roles of ants in exerting predation and competition pressure on invertebrates in tropical rain forests during drought and a post-drought period, we established a large-scale ecosystem manipulation experiment in Maliau Basin Conservation Area in Malaysian Borneo, suppressing the activity of ants on four 0.25 ha plots over a two-year period. We sampled hemipterans found in the leaf litter during a drought (July 2015) and a post-drought period (September 2016) period. We found significant shifts in the assemblage of hemipterans sampled from the leaf litter following ant suppression. Specifically, for ant-suppression plots, the species richness and abundance of herbivorous hemipterans increased only during the post-drought period. For predatory hemipterans, abundance increased with ant-suppression regardless of drought conditions, and we found marginal evidence for a species richness increase during the post-drought period with little or no change in the drought period. These results illustrate how ants in tropical forests structure invertebrate communities and how these effects may vary with climatic variation.  相似文献   

16.
The ant mosaic is a concept of the non-random spatial distribution of individual ant species in trees built upon the assumption of interspecific behavioural associations. However, colony identity and environmental variance may also play a role in species distribution. Here we assess the presence of ant mosaics in a primary forest ecosystem and whether they are structured by species' aggressive behaviours or by habitat filtering. We sampled arboreal ants from vertically stratified baits exposed in 225 canopy trees in a 9-ha plot of primary lowland forest in Papua New Guinea, the largest forest area surveyed to detect ant mosaics. We performed behavioural tests on conspecific ants from adjacent trees to determine the territories of individual colonies. We explored the environmental effects on the ant communities using information on the plot vegetation structure and topography. Furthermore, we created a novel statistical method to test for the community non-random spatial structure across the plot via spatial randomisation of individual colony territories. Finally, we linked spatial segregation among the four most common species to experimentally assessed rates of interspecies aggression. The ant communities comprised 57 species of highly variable abundance and vertical stratification. Ant community composition was spatially dependent, but it was not affected by tree species composition or canopy connectivity. Only local elevation had a significant but rather small effect. Individual colony territories ranged from one tree to 0.7 ha. Species were significantly over-dispersed, with their territory overlap significantly reduced. The level of aggression between pairs of the four most common species was positively correlated with their spatial segregation. Our study demonstrates the presence of ant mosaics in tropical pristine forest, which are maintained by interspecific aggression rather than habitat filtering, with vegetation structure having a rather small and indirect effect, probably linked to microclimate variability.  相似文献   

17.
In tropical rain forests, the ant community can be divided into ground and arboreal faunas. Here, we report a thorough sampling of the arboreal ant fauna of La Selva Biological Station, a Neotropical rain forest site. Forty-five canopy fogging samples were centered around large trees. Individual samples harbored an average of 35 ant species, with up to 55 species in a single sample. The fogging samples yielded 163 observed species total, out of a statistically estimated 199 species. We found no relationship between within-sample ant richness and focal tree species, nor were the ant faunas of nearby trees more similar to each other than the faunas of widely spaced trees. Species density was high, and beta diversity was low: A single column of vegetation typically harbors at least a fifth of the entire arboreal ant fauna. Considering the entire fauna, based on 23,326 species occurrence records using a wide variety of collecting methods, 182 of 539 observed species (196 of 605, estimated statistically) were entirely arboreal. The arboreal ant fauna is thus about a third of the total La Selva ant fauna, a robust result because inventory completeness was similar for ground and arboreal ants. The taxonomic history of discovery of the species that make up the La Selva fauna reveals no disproportionately large pool of undiscovered ant species in the canopy. The "last biotic frontier" for tropical ants has been the rotten wood, leaf litter, and soil of the forest floor.  相似文献   

18.
望天树林与相近类型植被结构的比较研究   总被引:20,自引:0,他引:20  
  相似文献   

19.
Species range boundaries often form along environmental gradients that dictate the success of the phenotypes present in each habitat. Sociality may allow colonization of environments where related species with a solitary lifestyle cannot persist. Social spiders in the genus Anelosimus appear restricted to low- and mid-elevation moist environments in the tropics, while subsocial spiders, common at higher elevations and latitudes, appear to be absent from the lowland tropical rainforest. Here, we seek factors that may simultaneously prevent subsocial Anelosimus species from colonizing the lowland rainforest while favouring species with large social groups in this habitat. To this end, we transplanted small groups of a subsocial species, which contain the offspring of a single female, from cloud forest habitat in the centre of its natural range to lower montane rainforest on the range margin and to lowland rainforest outside of the species range. Groups transplanted at the range margin and below their range limit were less likely to disperse and experienced increased mortality. This was correlated with greater rainfall intensity and ant abundance. We show that protection from rainfall enhances the performance of small groups of spiders in the lowland rainforest, and suggest that predation or disturbance by ants may influence the geographical range limits of this species.  相似文献   

20.
Environmental stressors and changes in land use have led to rapid and dramatic species losses. As such, we need effective monitoring programs that alert us not only to biodiversity losses, but also to functional changes in species assemblages and associated ecosystem processes. Ants are important components of terrestrial food webs and a key group in food web interactions and numerous ecosystem processes. Their sensitive and rapid response to environmental changes suggests that they are a suitable indicator group for the monitoring of abiotic, biotic, and functional changes. We tested the suitability of the incidence (i.e. the sum of all species occurrences at 30 baits), species richness, and functional richness of ants as indicators of ecological responses to environmental change, forest degradation, and of the ecosystem process predation on herbivorous arthropods. We sampled data along an elevational gradient (1000–3000 m a.s.l.) and across seasons (wetter and drier period) in a montane rainforest in southern Ecuador. The incidence of ants declined with increasing elevation but did not change with forest degradation. Ant incidence was higher during the drier season. Species richness was highly correlated with incidence and showed comparable results. Functional richness also declined with increasing elevation and did not change with forest degradation. However, a null-model comparison revealed that the functional richness pattern did not differ from a pattern expected for ant assemblages with randomly distributed sets of traits across species. Predation on artificial caterpillars decreased along the elevational gradient; the pattern was not driven by elevation itself, but by ant incidence (or interchangeable by ant richness), which positively affected predation. In spite of lower ant incidence (or ant richness), predation was higher during the wetter season and did not change with forest degradation and ant functional richness. We used path analysis to disentangle the causal relationships of the environmental factors temperature (with elevation as a proxy), season, and habitat degradation with the incidence and functional richness of ants, and their consequences for predation. Our results would suggest that the forecasted global warming might support more active and species-rich ant assemblages, which in turn would mediate increased predation on herbivorous arthropods. However, this prediction should be made with reservation, as it assumes that the dispersal of ants keeps pace with the climatic changes as well as a one-dimensional relationship between ants and predation within a food-web that comprises species interactions of much higher complexity. Our results also suggested that degraded forests in our study area might provide suitable habitat for epigaeic, ground-dwelling ant assemblages that do not differ in incidence, species richness, functional richness, composition, or predation on arthropods from assemblages of primary forests. Most importantly, our results suggest that the occurrence and activity of ants are important drivers of ecosystem processes and that changes in the incidence and richness of ants can be used as effective indicators of responses to temperature changes and of predation within mega-diverse forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号