首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Significant numbers of 3 pest species of noctuid moths were captured in traps baited with acetic acid, 3-methyl-1-butanol, and 3-methyl-1-pentanol. These were Lacanobia subjuncta (Grote & Robinson); Mamestra configurata Walker, bertha armyworm; and Xestia c-nigrum (L.), spotted cutworm. The combination of acetic acid and 3-methyl-1-butanol was superior to the individual chemicals in attracting all 3 species, whereas the combination of acetic acid and 3-methyl-1-pentanol was superior to the individual chemicals in attracting X. c-nigrum. For the 3 species of moths, numbers captured were similar in traps baited with the combination of acetic acid and 3-methyl-1-butanol or acetic acid and 3-methyl-1-pentanol. Traps baited with these attractants captured both males and females at a ratio near 1:1.  相似文献   

2.
Several microbial volatile organic compounds (MVOCs) that can serve as potential chemical markers for microbial contamination in tobacco have been identified. Four different fungal species, Aspergillus niger (AN), A. ornatus (AO), Pencillium chrysogenum (PC) and Rhizopus stolonifer (RS), commonly reported in moldy tobacco were cultured and screened for MVOCs. Because the MVOCs emitted by a microbial species are substrate specific, the fungal strains were separately grown on potato dextrose agar (PDA) and tobacco products. MVOCs from the mold cultures grown on PDA and tobacco products were extracted using closed-loop stripping analysis (CLSA) and identified by gas chromatography/time-of-flight mass spectrometry (GC/TOF-MS). Some of the prominent tobacco mold markers identified by this method include: 1-octen-3-ol; 2-octen-1-ol; 2-methyl-1-butanol; 3-methyl-1-butanol; 1-octene and 2-pentanone. In particular, 1-octen-3-ol was detected in all the mold cultures and moldy tobacco samples analyzed. Olfactory evaluation of 1-octen-3-ol indicated a characteristic musty odor and the odor threshold was determined to be approximately 200 ng/ml. The limits of detection for 1-octen-3-ol using GC/TOF-MS and GC/mass selective detector (MSD) in the full-scan mode and selected ion monitoring (SIM) mode were investigated. The CLSA-GC/TOF-MS demonstrates a fast, sensitive and semi-quantitative analytical technique for screening tobacco materials for the presence of mold via chemical markers of microbial contamination.  相似文献   

3.
Oxidation of short-chain iso-alkanes (isobutane, isopentane, 2-methylpentane, and 3-methylpentane) was studied with propane-grown resting mycelia of Scedosporium sp. A-4. Isobutane was oxidized to terf-butanol, but both isobutane and tert-butanol were not used for growth. Isopentane was oxidized to 3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-2-butanol but not to 2-methyl-1-butanol. 2-Methylpentane was oxidized to 4-methyl-1-pentanol, 2-methyl-2-pentanol, and 4-methyl-2-pentanol but not to 2-methyl-1-pentanol or 2-methyl-3-pentanol. 3-Methylpentane was not oxidized. Oxidation of branched alcohols was also studied.  相似文献   

4.
Penicillium aurantiogriseum Dierckx was cultivated on six agar substrates (barley meal agar, oat meal agar, wheat meal agar, malt extract agar, Czapek agar, and Norkrans agar) and on oat grain for 5 days in cultivation vessels provided with an inlet and an outlet for air. Volatile metabolites produced by the cultures were collected on a porous polymer adsorbent by passing an airstream through the vessel. Volatile metabolites were collected between days 2 and 5 after inoculation. CO2 production was simultaneously measured, and after the cultivation period ergosterol contents and the numbers of CFU of the cultures were determined. Alcohols of low molecular weight and sesquiterpenes were the dominant compounds found. During growth on oat grain the production of 8-carbon alcohols and 3-methyl-1-butanol was higher and the production of terpenes was lower than during growth on agar substrates. The compositions of the volatile metabolites from oat grain were more similar to those from wheat grain, which was used as a substrate in a previous investigation, than to those produced on any of the agar substrates. Regarding the agar substrates, the production of terpenes was most pronounced on the artificial substrates (Czapek agar and Norkrans agar) whereas alcohol production was highest on substrates based on cereals. The production of volatile metabolites was highly correlated with the production of CO2 and moderately correlated with ergosterol contents, whereas no correlation with the numbers of CFU was found. Thus, the volatile metabolites formed and the ergosterol contents of fungal cultures should be good indicators of present and past fungal activity.  相似文献   

5.
植物的根际促生菌能使植物增产,其中菌群产生的挥发性成分起重要作用。3-甲基-1-丁醇(3-methyl-1-butanol),即异戊醇,作为一种常见的微生物挥发性有机成分,但3-甲基-1-丁醇对高等植物种子萌发和生长的影响尚鲜见报道。本文研究了3种浓度(1、10和100 mg·L-1)的3-甲基-1-丁醇对小麦和玉米种子萌发的影响。结果表明,1和10 mg·L-1的3-甲基-1-丁醇处理均可提高玉米和小麦种子的活力指数;在低浓度的3-甲基-1-丁醇处理下,玉米和小麦种子可溶性糖和可溶性蛋白质含量减少,而幼芽SOD活性和叶绿素含量比对照组显著增加。本文研究表明,3-甲基-1-丁醇在适宜的浓度下可以促进玉米和小麦生长。  相似文献   

6.
Penicillium aurantiogriseum Dierckx was cultivated on six agar substrates (barley meal agar, oat meal agar, wheat meal agar, malt extract agar, Czapek agar, and Norkrans agar) and on oat grain for 5 days in cultivation vessels provided with an inlet and an outlet for air. Volatile metabolites produced by the cultures were collected on a porous polymer adsorbent by passing an airstream through the vessel. Volatile metabolites were collected between days 2 and 5 after inoculation. CO2 production was simultaneously measured, and after the cultivation period ergosterol contents and the numbers of CFU of the cultures were determined. Alcohols of low molecular weight and sesquiterpenes were the dominant compounds found. During growth on oat grain the production of 8-carbon alcohols and 3-methyl-1-butanol was higher and the production of terpenes was lower than during growth on agar substrates. The compositions of the volatile metabolites from oat grain were more similar to those from wheat grain, which was used as a substrate in a previous investigation, than to those produced on any of the agar substrates. Regarding the agar substrates, the production of terpenes was most pronounced on the artificial substrates (Czapek agar and Norkrans agar) whereas alcohol production was highest on substrates based on cereals. The production of volatile metabolites was highly correlated with the production of CO2 and moderately correlated with ergosterol contents, whereas no correlation with the numbers of CFU was found. Thus, the volatile metabolites formed and the ergosterol contents of fungal cultures should be good indicators of present and past fungal activity.  相似文献   

7.
Strains of the bacteria Zymomonas sp. were studied for their ability to form higher alcohols. In a complex growth medium, six strains were shown to produce significant amounts of 1-propanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol, pentanols, secondary hexyl-alcohols, and trace amounts of n-hexanol. When resting cells of these organisms were placed into a fermentation medium containing glucose and Tris-buffer, Z. mobilis 8938 produced increased levels of 1-butanol, and secondary hexyl-alcohols at concentrations of 13.5 mg/liter and 5.8 mg/liter, respectively. Another strain, Z. mobilis subsp. mobilis B 806, stimulated the formation of 1-propanol and 1-butanol at concentrations of 14.9 mg/liter and 23.52 mg/liter, respectively. Amino acids or amino acid precursors were then added to the fermentation medium. The presence of threonine and α-ketobutyric acid stimulated Z. mobilis 8938 to produce 82.6 mg/liter secondary hexyl-alcohols and 8.0 mg/liter n-hexanol, respectively. Isoleucine and valine increased the production of 2-methyl-1-butanol (394.0 mg/liter) and 3-methyl-1-butanol (113.4 mg/liter), respectively, by Z. mobilis subsp. mobilis B 806. Glutamine enhanced the formation of 2-methyl-2-butanol production to concentrations 38.8 mg/liter in Zymomonas strain B 806. Additional experiments suggested that higher alcohol production could also be accomplished in the absence of glucose when cells were allowed to metabolize the precursors only. The effect of aromatic amino acids on phenol production was determined using resting cells of Zymomonas sp. The maximum yield of phenol (111.6 mg/liter) was found by Zymomonas strain 8938 in the presence of tyrosine. The addition of phenylalanine also stimulated this strain to form 71.4 mg/liter of phenol.  相似文献   

8.
Volatile compounds produced by Pseudomonas putrefaciens, P. fluorescens, and an Achromobacter species in sterile fish muscle (Sebastes melanops) were identified by combined gas-liquid chromatography and mass spectrometry. Compounds produced by P. putrefaciens included methyl mercaptan, dimethyl disulfide, dimethyl trisulfide, 3-methyl-1-butanol, and trimethylamine. With the exception of dimethyl trisulfide, the same compounds were produced by an Achromobacter species. Methyl mercaptan and dimethyl disulfide were the major sulfur-containing compounds produced by P. fluorescens.  相似文献   

9.
With succinic anhydride as acylating agent, three commercial lipases – Candida antarctica lipase B (CALB), Pseudomonas cepacia lipase and Pseudomonas fluorescens lipase – were employed in the kinetic resolution of a series of rac-alkyl alcohols: 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, 2-octanol, 3-hexanol, 3-methyl-2-butanol, 6-methyl-5-heptene-2-ol, 3-methyl-2-cyclohexene-1-ol and 2-methyl-1-pentanol. The most effective tested enzyme, immobilized CALB, was able to resolve most of the alcohols with high enantioselectivity, even higher (with enantiomeric ratios up to 115 and 91, for 3-hexanol and 3-methyl-2-butanol, respectively) than when vinyl acetate was used as the acylating agent. More importantly, the unreacted alcohol and the monoester succinate produced could be easily separated by a simple aqueous base-organic solvent liquid–liquid extraction. Using succinic anhydride as acylating agent and CALB, enantiomerically pure (S)-2-pentanol with 99% ee and (R)-2-pentanol with 95% ee were prepared in gram-scale reactions.  相似文献   

10.
Volatile compounds produced by Pseudomonas perolens ATCC 10757 in sterile fish muscle (Sebastes melanops) were identified by combined gas-liquid chromatography and mass spectrometry. Compounds positively identified included methyl mercaptan, dimethyl disulfide, dimethyl trisulfide, 3-methyl-1-butanol, butanone, and 2-methoxy-3-isopropylpyrazine. Compounds tentatively identified included 1-penten-3-ol and 2-methoxy-3-sec-butylpyrazine. The substituted pyrazine derivative 2-methoxy-3-isopropylpyrazine was primarily responsible for the musty, potato-like odor produced by P. perolens.  相似文献   

11.
The pentanol isomers 2-methyl-1-butanol and 3-methyl-1-butanol represent commercially interesting alcohols due to their potential application as biofuels. For a sustainable microbial production of these compounds, Corynebacterium glutamicum was engineered for producing 2-methyl-1-butanol and 3-methyl-1-butanol via the Ehrlich pathway from 2-keto-3-methylvalerate and 2-ketoisocaproate, respectively. In addition to an already available 2-ketoisocaproate producer, a 2-keto-3-methylvalerate accumulating C. glutamicum strain was also constructed. For this purpose, we reduced the activity of the branched-chain amino acid transaminase in an available C. glutamicum l-isoleucine producer (K2P55) via a start codon exchange in the ilvE gene enabling accumulation of up to 3.67 g/l 2-keto-3-methylvalerate. Subsequently, nine strains expressing different gene combinations for three 2-keto acid decarboxylases and three alcohol dehydrogenases were constructed and characterized. The best strains accumulated 0.37 g/l 2-methyl-1-butanol and 2.76 g/l 3-methyl-1-butanol in defined medium within 48 h under oxygen deprivation conditions, making these strains ideal candidates for additional strain and process optimization.  相似文献   

12.
Branched-chain amino acids (BCAAs) are key substrates in the formation of fusel alcohols, important flavour components in fermented foods. The first step in the catabolic BCAA degradation is a transaminase step, catalyzed by a branched-chain amino acid transaminase (BCAAT). Saccharomyces cerevisiae possesses a mitochondrial and a cytosolic BCAAT, Bat1p and Bat2p, respectively. In order to study the impact of the BCAATs on fusel alcohol production derived from the BCAA metabolism, S. cerevisiae BCAAT-deletion mutants were constructed. The BCAA l-leucine was exogenously supplied during cultivations with mutants of S. cerevisiae. BAT1 deletion is not essential for fusel alcohol production, neither under glucose nor under ethanol growth conditions. The 3-methyl-1-butanol production rate of bat1Delta-cells on ethanol was decreased in comparison with that of wild-type cells, but the cells were still able to produce 3-methyl-1-butanol. However, drastic effects in fusel alcohol production were obtained in cells lacking BAT2. Although the constructed bat2Delta-single deletion strain and the bat1Deltabat2Delta-double deletion strain were still able to produce 3-methyl-1-butanol when grown on glucose, they were incapable of producing any 3-methyl-1-butanol when ethanol was the sole carbon source available. In the circumstances used, gene expression analysis revealed a strong upregulation of BAT2 gene activity in the wild type, when cells grew on ethanol as carbon source. Apparently, the carbon metabolism is able to influence the expression of BCAATs and interferes with the nitrogen metabolism. Furthermore, analysis of gene expression profiles shows that the expression of genes coding for other transaminases present in S. cerevisiae was influenced by the deletion of one or both BCAATs. Several transaminases were upregulated when a BCAAT was deleted. Strikingly, none of the known transaminases was significantly upregulated when BAT2 was deleted. Therefore we conclude that the expression of BAT2 is essential for 3-methyl-1-butanol formation on the non-fermentable carbon source, ethanol.  相似文献   

13.
Aedes albopictus is a vector of arboviruses and filarial nematodes. Originating from Asia, this mosquito has rapidly expanded its geographical distribution and colonized areas across both temperate and tropical regions. Due to the increase in insecticide resistance, the use of environmentally friendly vector control methods is encouraged worldwide. Using methods based on semiochemicals in baited traps are promising for management of mosquito populations. Interestingly, human skin microbiota was shown to generate volatile compounds that attract the mosquito species Anopheles gambiae and Aedes aegypti. Here, we investigated the composition of skin bacteria from different volunteers and the attractive potential of individual isolates to nulliparous Ae. albopictus females. We showed that three out of 16 tested isolates were more attractive and two were more repulsive. We identified dodecenol as being preferentially produced by attractive isolates and 2-methyl-1-butanol (and to a lesser extent 3-methyl-1-butanol) as being overproduced by these isolates compared with the other ones. Those bacterial volatile organic compounds represent promising candidates but further studies are needed to evaluate their potential application for baited traps improvement.  相似文献   

14.
The microbial flora of naturally contaminated beef stored in air was similar to that frequently recorded for meat stored under gas permeable films. Compounds produced as a result of microbial growth were acetoin, diacetyl, 3-methyl-1-butanol, 2-methyl-1-propanol, ethyl esters of acetic, propionic, butyric, isovaleric and hexanoic acids, methane thiol, dimethylsulphide, dimethyl disulphide, 1-undecene and 1,4-undecadiene. The first four compounds, which are known end-products of Brochothrix thermosphacta metabolism, were consistently detected at earlier stages of storage than the others, all of which have been shown to be produced by Pseudomonas spp. A pattern of odour development consistent with the chemical changes was also observed.  相似文献   

15.
The temperature dependence of the enantioselectivity of Candida antarctica lipase B for 3-hexanol, 2-butanol, 3-methyl-2-butanol, 3,3-dimethyl-2-butanol, and 1-bromo-2-butanol revealed that the differential activation entropy, deltaR-SdeltaS, was as significant as the differential activation enthalpy, DeltaR-SdeltaH, to the enantiomeric ratio, E. 1-Bromo-2-butanol, with isosteric substituents, displayed the largest deltaR-SdeltaS. 3-Hexanol displayed, contrary to other sec-alcohols, a positive deltaR-SdeltaS. In other words, for 3-hexanol the preferred R-enantiomer is not only favored by enthalpy but also by entropy. Molecular dynamics (MD) simulations and systematic search calculations of the substrate accessible volume within the active site revealed that the (R)-3-hexanol transition state (TS) accessed a larger volume within the active site than the (S)-3-hexanol TS. This correlates well with the higher TS entropy of (R)-3-hexanol. In addition, this enantiomer did also yield a higher number of allowed conformations, N, from the systematic search routines, than did the S-enantiomer. The substrate accessible volume was greater for the enantiomer preferred by entropy also for 2-butanol. For 3,3-dimethyl-2-butanol, however, neither MD-simulations nor systematic search calculations yielded substrate accessible volumes that correlate to TS entropy. Ambiguous results were achieved for 3-methyl-2-butanol.  相似文献   

16.
Microbes are ubiquitous on plant surfaces. However, interactions between epiphytic microbes and arthropods are rarely considered as a factor that affects arthropod behaviors. Here, volatile emissions from an epiphytic fungus were investigated as semiochemical attractants for two eusocial wasps. The fungus Aureobasidium pullulans was isolated from apples, and the volatile compounds emitted by fungal colonies were quantified. The attractiveness of fungal colonies and fungal volatiles to social wasps (Vespula spp.) were experimentally tested in the field. Three important findings emerged: (1) traps baited with A. pullulans caught 2750?% more wasps on average than unbaited control traps; (2) the major headspace volatiles emitted by A. pullulans were 2-methyl-1-butanol, 3-methyl-1-butanol, and 2-phenylethyl alcohol; and (3) a synthetic blend of fungal volatiles attracted 4,933?% more wasps on average than unbaited controls. Wasps were most attracted to 2-methyl-1-butanol. The primary wasp species attracted to fungal volatiles were the western yellowjacket (Vespula pensylvanica) and the German yellowjacket (V. germanica), and both species externally vectored A. pullulans. This is the first study to link microbial volatile emissions with eusocial wasp behaviors, and these experiments indicate that volatile compounds emitted by an epiphytic fungus can be responsible for wasp attraction. This work implicates epiphytic microbes as important components in the community ecology of some eusocial hymenopterans, and fungal emissions may signal suitable nutrient sources to foraging wasps. Our experiments are suggestive of a potential symbiosis, but additional studies are needed to determine if eusocial wasp–fungal associations are widespread, and whether these associations are incidental, facultative, or obligate.  相似文献   

17.
The human liver alpha alpha alcohol dehydrogenase exhibits a different substrate specificity and stereospecificity for secondary alcohols than the human beta 1 beta 1, and gamma 1 gamma 1 or horse liver alcohol dehydrogenases. All of the enzymes efficiently oxidize primary alcohols, but alpha alpha oxidizes secondary alcohols far more efficiently than human beta 1 beta 1 and gamma 1 gamma 1 or horse liver alcohol dehydrogenase. Specifically, alpha alpha oxidizes four- and five-carbon secondary alcohols with efficiencies 0.06-2.2 times that of primary homologs and oxidizes these secondary alcohols with efficiencies up to 3 orders of magnitude greater than those of the three other isoenzymes. Whereas the human beta 1 beta 1, gamma 1 gamma 1 and horse isoenzymes show a distinct preference toward (S)-(+)-3-methyl-2-butanol, the alpha alpha isoenzyme prefers (R)-(-)-3-methyl-2-butanol. Computer-simulated graphics demonstrate that the horse subunit accommodates (S)-(+)-3-methyl-2-butanol within the active site much better than the opposite stereoisomer, primarily due to steric hindrance caused by Phe-93. Human alpha may accommodate (R)-(-)-3-methyl-2-butanol better than (S)-(+)-3-methyl-2-butanol because of close contacts between the latter and Thr-48. These observations suggest that substitutions at positions 93 and 48 in the active site of human liver alcohol dehydrogenase isoenzymes may determine their substrate specificity for secondary alcohols.  相似文献   

18.
The need for improved rapid diagnostic tests for tuberculosis disease has prompted interest in the volatile organic compounds (VOCs) emitted by Mycobacterium tuberculosis complex bacteria. We have investigated VOCs emitted by Mycobacterium bovis BCG grown on Lowenstein-Jensen media using selected ion flow tube mass spectrometry and thermal desorption-gas chromatography-mass spectrometry. Compounds observed included dimethyl sulphide, 3-methyl-1-butanol, 2-methyl-1-propanol, butanone, 2-methyl-1-butanol, methyl 2-methylbutanoate, 2-phenylethanol and hydrogen sulphide. Changes in levels of acetaldehyde, methanol and ammonia were also observed. The compounds identified are not unique to M.?bovis BCG, and further studies are needed to validate their diagnostic value. Investigations using an ultra-rapid gas chromatograph with a surface acoustic wave sensor (zNose) demonstrated the presence of 2-phenylethanol (PEA) in the headspace of cultures of M.?bovis BCG and Mycobacterium smegmatis, when grown on Lowenstein-Jensen supplemented with glycerol. PEA is a reversible inhibitor of DNA synthesis. It is used during selective isolation of gram-positive bacteria and may also be used to inhibit mycobacterial growth. PEA production was observed to be dependent on growth of mycobacteria. Further study is required to elucidate the metabolic pathways involved and assess whether this compound is produced during in vivo growth of mycobacteria.  相似文献   

19.
The volatile fragments of air-aged cholesterol were analysed by means of gas chromatography-mass spectrometry; The following fourteen compounds were identified: ethanol, acetic acid, acetone, 2-methylpropene, 2-methyl-1-propanol, 2-methyl-2-propanol, 2-butanone, 2-methylpropionic acid, 2-methyl-2-butanol, 2-pentanone, 3-methyl-2-butanone, 2-methyl-1-pentene, 2-methyl-2-pentanol, and 2-methyl-4-penten-2-ol. Their formation via decomposition of initially formed sterol hydroperoxides is discussed.  相似文献   

20.
Selective Degradation of Wood Components by White-Rot Fungi   总被引:6,自引:0,他引:6  
In order to find naturally occurring white-rot fungi which preferentially degrade lignin. 25 different species of such fungi were cultivated on pine wood blocks and on kraft lignin agar plates with and without cellulose. Due to differences in phenol oxidase reactions on the kraft lignin agar plates, the 25 fungi could be divided into two groups, 1 and 2, which also differed in other properties. The three Group I fungi Sporotrichum pulverulentum, Phanerochaete sp. L1 and Polyporus dichrous produced high levels of endo-l,4-β-glucanase and cellobiose:quinone oxidoreductase in shaking cellulose flasks and a low level of phenol oxidase in standing wood meal flasks, The four fungi Merulius tremellosus, Phlebia radiata, Pycuoporus cinnabarinus and Pleurotus ostreatus from Group 2, on the other hand, produced low levels of endo-1,4-β-glucanase and cellobiose:.quinone oxidoreductase in the cellulose. flasks and a high level of phenol oxidase in the wood meal flasks. Analyses of pine wood blocks degraded by the above-mentioned fungi in the presence of either malt extract, asparagine or NH4H2PO4 revealed that malt extract gave good lignin degradation. In the presence of this nutrient source. P. cinnabarinus, at 3.4% weight loss, even degraded 12.5% lignin without loss of cellulose or mannan. No common degradation pattern was, however, obtained using mall extract, asparagine or NH4H2PO4, It is suggested that while-rot fungi, which preferentially degrade lignin, may be found among Group 2 fungi producing large amounts of phenol oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号