首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
2.
The present study investigated the potency of the mannosylated cationic liposomes (Man liposomes) that we have developed in novel DNA vaccine carrier. Ovalbumin (OVA) was selected as a model antigen for vaccination; accordingly, OVA-encoding pDNA (pCMV-OVA) was constructed to evaluate DNA vaccination. The potency of the Man liposome/pCMV-OVA complex was compared with naked pCMV-OVA and that complexed with DC-Chol liposomes. In cultured mouse peritoneal macrophages, MHC class I-restricted antigen presentation of the Man liposome/pCMV-OVA complex was significantly higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. After intravenous administration, OVA mRNA expression and MHC class I-restricted antigen presentation on CD11c+ cells and inflammatory cytokines, such as TNF-alpha, IL-12, and IFN-gamma, that can enhance the Th1 response of the Man liposome/pCMV-OVA complex were higher than that of naked pCMV-OVA and that complexed with DC-Chol liposomes. Also, the spleen cells from mice immunized by intravenous administration of the Man liposome/pCMV-OVA complex showed the highest proliferation response and IFN-gamma secretion. These findings suggest that the targeted delivery of DNA vaccine by Man liposomes is a potent vaccination method for DNA vaccine therapy.  相似文献   

3.
In spite of the important roles of dendritic cells in DNA-based therapies, the cellular uptake mechanism of plasmid DNA (pDNA) in dendritic cells is poorly understood. The present study was undertaken to investigate the binding and uptake of pDNA in vitro using a murine dendritic cell line, DC2.4 cells. A significant and time-dependent cellular association of [32P]pDNA with DC2.4 cells was observed at 37 degrees C and this fell markedly at 4 degrees C. The binding and uptake of [32P]pDNA were significantly inhibited by cold pDNA, polyinosinic acid (poly[I]), dextran sulfate, or heparin, but not by polycytidylic acid (poly[C]), dextran, or EDTA, suggesting that a specific mechanism mediated by a receptor like the macrophage scavenger receptor may be involved. The TCA precipitation experiments showed that DC2.4 cells rapidly endocytosed and degraded a significant amount of [32P]pDNA at 37 degrees C and released the degradation products into the medium. The pDNA degradation was also significantly inhibited by poly[I], but not poly[C]. The rate of pDNA degradation by DC2.4 cells was significantly higher than that by macrophages. A confocal microscopic study using fluorescein-labeled pDNA confirmed the rapid internalization and degradation of pDNA by the dendritic cells. Taken together, these results indicate that pDNA is efficiently taken up and rapidly digested by the dendritic cells via a specific mechanism. These findings may suggest the important role of the dendritic cells in the innate immune system for host defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号