首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-SNARE Sso2p. The factors affecting the level of active laccase obtained, besides the cultivation temperature, included pH and aeration. Laccase-expressing and Sso2p-overexpressing S. cerevisiae was cultivated in the presence of coniferyl aldehyde to examine resistance to lignocellulose-derived phenolic fermentation inhibitors. The laccase-producing transformant had the ability to convert coniferyl aldehyde at a faster rate than a control transformant not expressing laccase, which enabled faster growth and ethanol formation. The laccase-producing transformant was also able to ferment a dilute acid spruce hydrolysate at a faster rate than the control transformant. A decrease in the content of low-molecular-mass aromatic compounds, accompanied by an increase in the content of high-molecular-mass compounds, was observed during fermentation with the laccase-expressing strain, illustrating that laccase was active even at the very low levels of oxygen supplied. Our results demonstrate the importance of phenolic compounds as fermentation inhibitors and the advantage of using laccase-expressing yeast strains for producing ethanol from lignocellulose.  相似文献   

3.
Summary Fermentation tests in clearly defined laboratory conditions were carried out with eight functionally selected strains of Saccharomyces cerevisiae. Analysis of the data showed that there were no significant differences in malic acid production between the strains when the acid was initially present. When it was initially absent, however, significant differences were observed two strains (Nos. 1141 and 1083) showing marked productive superiority. With malic acid as the sole C source, two strains (Nos. 1109 and 1141) showed less acid consumption.  相似文献   

4.
The development of tolerant microorganisms is needed for the efficient fermentation of inhibitory lignocellulose hydrolysates. In the current work, the fermentation performance of six selected strains of Saccharomyces cerevisiae in dilute-acid spruce hydrolysate was compared using two different modes of fermentation; either single pulse addition of hydrolysate to exponentially growing cells or continuous feeding of the same amount of hydrolysate in a controlled fed-batch fermentation was made. All strains performed better in fed-batch mode than when all hydrolysate was added at once. However, the difference between strain performances varied significantly in the two fermentation modes. Large differences were observed between strains during the fed-batch experiments in the in vitro ability to reduce the furan compounds furfural and 5-hydroxymethyl furfural (HMF). A common feature among the strains was the induction of NADPH-coupled reduction of furfural and HMF, with the exception of strain CBS 8066. This strain also performed relatively poorly in both batch and fed-batch fermentations. Strain TMB3000--previously isolated from spent sulphite liquor fermentation--was by far the most efficient strain with respect to specific fermentation rate in both pulse addition and fed-batch mode. This strain was the only strain showing a significant constitutive NADH-coupled in vitro reduction of HMF. The ability to induce NADPH-coupled reduction together with the level of the apparently constitutive NADH-coupled reduction appeared to be key factors for selecting a suitable strain for fed-batch conversion of lignocellulose hydrolysate.  相似文献   

5.
6.
Cells of Saccharomyces cerevisiae were grown aerobically and anaerobically, and levels of the protective compounds, cysteine and glutathione, and activities of defensive enzymes, catalase and superoxide dismutase, against an oxygen stress were determined and compared in both cells. Aerobiosis increased both the compounds and enzyme activities. The elevated synthesis of glutathione could be associated with the increased levels of cysteine which in its turn was found to be controlled by the oxygen-dependent activation of cystathionine beta-synthase.  相似文献   

7.
After re-inoculation of the yeast Saccharomyces cerevisiae from phosphate-deficient to complete medium, the total content of polyphosphates increased tenfold during 2 h (hypercompensation), but the content of certain fractions increased differently. The content of acid-soluble polyphosphate increased to the maximal extent. The ratio of the activities of two exopolyphosphatases also changed in the cytosol. Activity of a low molecular weight exopolyphosphatase (40 kD) decreased almost twice, whereas activity of a high molecular weight exopolyphosphatase (830 kD) increased tenfold. Cycloheximide blocks the increase in activity of high molecular weight exopolyphosphatase and hence, under these conditions the latter is synthesized de novo. Inhibitors of energy metabolism and cycloheximide, an inhibitor of protein synthesis, differently influence accumulation of certain polyphosphate fractions under hypercompensation conditions. The effect of iodoacetamide, an inhibitor of glycolysis, on any fraction is negligible, while cycloheximide suppresses accumulation of only polyP4 fraction associated with the cell envelope and bafilomycin A1, an inhibitor of vacuolar H+-ATPase, suppresses accumulation of polyP3 fraction. The protonophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) to variable extent inhibits accumulation of all the fractions. Analysis of the effect of inhibitors on accumulation of polyphosphates under hypercompensation conditions confirms various localization, heterogeneity, and multiplicity of the routes of biosynthesis of certain fractions of these macroergic phosphorus compounds and also suggests interrelation between their biosynthesis and the gradient of H+ electrochemical potential.  相似文献   

8.
Summary Kinetic studies of the aerobic batch growth of S. cerevisiae on a glucose substrate, a fructose substrate and a substrate consisting of an equimolar mixture of the two sugars are discussed with reference to possible transport mechanisms. Two systems of uptake were found to be present; one resulting in equal uptake of both glucose and fructose, the other in preferential uptake of glucose to fructose.  相似文献   

9.
【目的】研究酿酒酵母(Saccharomycesc erevisiae)中乙酰辅酶A合成酶基因ACS1和ACS2的生理作用。【方法】将来源于S.cerevisiae的ACS1和ACS2分别进行过量表达,研究过量表达ACS1和ACS2后S.cerevisiae胞内乙酰辅酶A含量、ATP水平、甲羟戊酸途径转录和乙醇耐受性等生理学特性变化。【结果】与出发菌株相比,过量表达ACS1和ACS2使得:(1)胞内乙酰辅酶A含量提高了2.19倍(ACS1)和5.02倍(ACS2);(2)胞内ATP含量提高了3.93倍(ACS1)和2.05倍(ACS2);(3)甲羟戊酸途径8个关键基因表达量显著上调;(4)S.cerevisiae对乙醇胁迫抵御能力显著增强。过量表达ACS1对乙醇胁迫的耐受能力强于过量表达ACS2。【结论】增加胞内乙酰辅酶A的含量可以显著增加甲羟戊酸途径碳代谢流量,并增强S.cerevisiae对发酵过程主要副产物乙醇的耐受能力。  相似文献   

10.
11.
Summary In order to test the possibility of producing ethanol under aerobic conditions, 4 mitochondrial mutants of Saccharomyces cerevisiae lacking the capacity to respire were assayed for ethanol and biomass yield. As controls the corresponding wild strains were tested under anaerobic and aerobic conditions. In the latter case respiration was blocked by catabolite repression. The data show that the respiratory deficient mutants yield slightly less ethanol than the anaerobically grown wild strains, but more than those grown aerobically. Therefore, if for technical reasons aerobic fermentation is necessary, the use of mitochondrial mutants would be economically advantageous.  相似文献   

12.
AIMS: To study the effect of different starvation conditions on the flocculation of an ale brewing yeast of Saccharomyces cerevisiae NCYC 1195. METHODS AND RESULTS: Flocculation was assessed by a micro-flocculation technique (Soares and Mota 1997). Carbon-starved cells of a NewFlo phenotype strain did not lose flocculation during a 48 h period. Cells incubated only in the presence of fermentable carbon sources (glucose, galactose and maltose at 2%, w/v), showed a progressive flocculation loss. The incubation of cells in 4% (v/v) ethanol did not induce a flocculation loss. The simultaneous incubation of cells in the presence of 2% (w/v) glucose and 15 microg ml(-1) cycloheximide hindered flocculation loss. The presence of 0.1 mmol l(-1) PMSF or 10 mmol l-1 EDTA prevented partially or completely, respectively, the loss of flocculation in the presence of glucose. CONCLUSIONS: Fermentable sugars induced a flocculation loss, which seems to require de novo protein synthesis and the involvement of different proteases. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings reported here contribute to the elucidation of the role of nutrients on the physiological control of yeast flocculation.  相似文献   

13.
The role of exopolyphosphatase PPN1 in polyphosphate metabolism in fungi has been studied in strains of Saccharomyces cerevisiae transformed by the yeast PPN1 gene and its ortholog of the fungus Acremonium chrysogenum producing cephalosporin C. The PPN1 genes were expressed under a strong constitutive promoter of the gene of glycerol aldehyde-triphosphate dehydrogenase of S. cerevisiae in the vector pMB1. The yeast strain with inactivated PPN1 gene was transformed by the above vectors containing the PPN1 genes of S. cerevisiae and A. chrysogenum. Exopolyphosphatase activity in the transformant with the yeast PPN1 increased 28- and 11-fold compared to the mutant and parent PPN1 strains. The amount of polyphosphate in this transformant decreased threefold. Neither the increase in exopolyphosphatase activity nor the decrease in polyphosphate content was observed in the transformant with the orthologous PPN1 gene of A. chrysogenum, suggesting the absence of the active form of PPN1 in this transformant.  相似文献   

14.
Effect of amino acids on glutathione production by Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
Summary The constituent amino acids of the glutathione (GSH) tripeptide chain, glutamate, cysteine and glycine, were investigated for positive effects on GSH production in shake-flask cultures of Saccharomyces cerevisiae with glucose as the carbon source. Cysteine was confirmed as the key amino acid for increasing the specific GSH production rate, g, but showed some growth inhibition, especially in the second growth phase (ethanol-assimilation phase). An intracellular cysteine delivery agent, thiazolidine, showed a similar pattern of increased GSH production and growth inhibition, but to a slightly lesser degree, compared with free cysteine. The initial cysteine concentration affected both the specific growth rate, µ, and g, up to about 5 mm for µ and about 2–3 mm for g. Results of the [35S]cysteine-labelling experiments suggest a complicated role of cysteine in increasing GSH production and further investigation may be necessary. Offprint requests to: S. Shioya  相似文献   

15.
Summary Experiments were performed to investigate growth, ethanol and glycerol production by wild-type strains (RHO) and respiratory-deficient (rho) mutants of Saccharomyces cerevisiae. Furthermore protoplasts were fused in order to enhance the fermentation capacity of a flocculent strain. At high substrate conditions, 150 g/l of saccharose, there is no difference in cell growth. However, at a glucose concentration of 10–20 g/l the mutants grow much slower. After 3 days of incubation at 28° C in a complete medium the viability of the two strains is the same. In minimal medium on the other hand the number of viable cells of the mutant is 100-fold reduced. All mutants tested showed a higher specific activity of alcohol dehydrogenase (ADH I) and an enhanced production of glycerol compared with the wild-type strain. By protoplast fusion a modified flocculent strain was obtained with higher specific activity of ADH I and a reduced biosynthesis of glycerol. However, the yields of ethanol (75–78%) are about the same for the wild-type strain and the rho mutants under aerobic conditions in absence of catabolite repression.  相似文献   

16.
17.
18.
19.
Pdr5p, the major multidrug exporter in Saccharomyces cerevisiae, is a member of the ATP-binding cassette (ABC) superfamily. Pdr5p shares similar mechanisms of substrate recognition and transport with the human MDR1-Pgp, despite an inverted topology of transmembrane and ATP-binding domains. The hexahistidine-tagged Pdr5p multidrug transporter was highly overexpressed in yeast strains where other ABC genes have been deleted. After solubilization and purification, the 160-kDa recombinant Pdr5p has been reconstituted into a lipid bilayer. Controlled detergent removal from Pdr5p-lipid-detergent micelles allowed the production of peculiar square-shaped particles coexisting with liposomes and proteoliposomes. These particles having 11 nm in side were well suited for single particle analysis by electron microscopy. From such analysis, a computed volume has been determined at 25-A resolution, giving insight into the structural organization of Pdr5p. Comparison with the reported structures of different bacterial ABC transporters was consistent with a dimeric organization of Pdr5p in the square particles. Each monomer was composed of three subregions corresponding to a membrane region of about 50 A in height that joins two well separated protruding stalks of about 40 A in height, ending each one with a cytoplasmic nucleotide-binding domain (NBD) lobe of about 50-60 A in diameter. The three-dimensional reconstruction of Pdr5p revealed a close arrangement and a structural asymmetric organization of the two NBDs that appeared oriented perpendicularly within a monomer. The existence of different angular positions of the NBDs, with respect to the stalks, suggest rotational movements during the catalytic cycle.  相似文献   

20.
Saccharomyces cerevisiae cells possess an alkali metal cation antiporter encoded by the NHA1 gene. Nha1p is unique in the family of yeast Na+/H+ antiporters on account of its broad substrate specificity (Na+, Li+, K+) and its long C-terminus (56% of the whole protein). In order to study the role of the C-terminus in Nha1p function, we constructed a series of 13 truncated NHA1 versions ranging from the complete one (2958 nucleotides, 985 amino acids) down to the shortest version (1416 nucleotides, 472 amino acids), with only 41 amino acid residues after the last putative transmembrane domain. Truncated NHA1 versions were expressed in an S. cerevisiae alkali metal cation-sensitive strain (B31; ena1-4Delta nha1Delta). We found that the entire Nha1p C-terminus domain is not necessary for either the proper localization of the antiporter in the plasma membrane or the transport of all four substrates (we identified rubidium as the fourth Nha1p substrate). Partial truncation of the C-terminus of about 70 terminal amino acids improves the tolerance of cells to Na+, Li+ and Rb+ compared with cells expressing the complete Nha1p. The presence of the neighbouring part of the C-terminus (amino acids 883-928), rich in aspartate and glutamate residues, is necessary for the maintenance of maximum Nha1p activity towards sodium and lithium. In the case of potassium, the participation of the long C-terminus in the regulation of intracellular potassium content is demonstrated. We also present evidence that the Nha1p C-terminus is involved in the cell response to sudden changes in environmental osmolarity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号