首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A rapid and sensitive high-performance liquid chromatography–electrospray MS method has been developed to determine tissue distribution of betulinic acid in mice. The method involved deproteinization of these samples with 2.5 volumes (v/w) of acetonitrile–ethanol (1:1) and then 5 μl aliquots of the supernatant were injected onto a C18 reversed-phase column coupled with an electrospray MS system. The mobile phase employed isocratic elution with 80% acetonitrile for 10 min; the flow-rate was 0.7 ml/min. The column effluent was analyzed by selected ion monitoring for the negative pseudo-molecular ion of betulinic acid [M−H] at m/z 455. The limit of detection for betulinic acid in biological samples by this method was approximately 1.4 pg and the coefficients of variation of the assay (intra- and inter-day) were generally low (below 9.1%). When athymic mice bearing human melanoma were treated with betulinic acid (500 mg/kg, i.p.), distribution was as follows: tumor, 452.2±261.2 μg/g; liver, 233.9±80.3 μg/g; lung, 74.8±63.7 μg/g; kidney, 95.8±122.8 μg/g; blood, 1.8±0.5 μg/ml. No interference was noted due to endogenous substances. These methods of analysis should be of value in future studies related to the development and characterization of betulinic acid.  相似文献   

2.
Optimization for headspace solid-phase microextraction (SPME) was studied with a view to performing gas chromatographic–mass spectrometric (GC–MS) screening of volatile hydrocarbons (VHCs) in blood. Twenty hydrocarbons comprising aliphatic hydrocarbons ranging from n-hexane to n-tridecane, and aromatic hydrocarbons ranging from benzene to trimethylbenzenes were used in this study. This method can be used for examining a burned body to ascertain whether the victim had been alive or not when the burning incident took place. n-Hexane, n-heptane and benzene, the main indicators of gasoline components, were found as detectable peaks through the use of cryogenic oven trapping upon SPME injection into a GC–MS instrument. The optimal screening procedure was performed as follows. The analytes in the headspace of 0.2 g of blood mixed with 0.8 ml of water plus 0.2 μg of toluene-d8 at −5°C were adsorbed to a 100-μm polydimethylsiloxane (PDMS) fiber for 30 min, and measured using the full-mass-scanning GC–MS method. The lower detection limits of all the compounds were 0.01 μg per 1 g of blood. Linearities (r2) within the range 0.01 to 4 μg per 1 g of blood were only obtained for the aromatic hydrocarbons at between 0.9638 (pseudocumene) and 0.9994 (toluene), but not for aliphatic hydrocarbons at between 0.9392 (n-tridecane) and 0.9935 (n-hexane). The coefficients of variation at 0.2 μg/g were less than 8.6% (n-undecane). In conclusion, this method is feasible for the screening of volatile hydrocarbons from blood in forensic medicine.  相似文献   

3.
A simple method for analysis of five local anaesthetics in blood was developed using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry–electron impact ionization selected ion monitoring (GC–MS–EI-SIM). Deuterated lidocaine (d10-lidocaine) was synthesized and used as a desirable internal standard (I.S.). A vial containing a blood sample, 5 M sodium hydroxide and d10-lidocaine (I.S.) was heated at 120°C. The extraction fiber of the SPME system was exposed for 45 min in the headspace of the vial. The compounds adsorbed on the fiber were desorbed by exposing the fiber in the injection port of a GC–MS system. The calibration curves showed linearity in the range of 0.1–20 μg/g for lidocaine and mepivacaine, 0.5–20 μg/g for bupivacaine and 1–20 μg/g for prilocaine in blood. No interfering substances were found, and the time for analysis was 65 min for one sample. In addition, this proposed method was applied to a medico–legal case where the cause of death was suspected to be acute local anaesthetics poisoning. Mepivacaine was detected in the left and right heart blood samples of the victim at concentrations of 18.6 and 15.8 μg/g, respectively.  相似文献   

4.
A gas chromatography–mass spectrometry method (SIM mode) was developed for the determination of perfluorodecalin (cis and trans isomers, 50% each) (FDC), and perfluoromethylcyclohexylpiperidine (3 isomers) (FMCP) in rat blood. The chromatographic separation was performed by injection in the split mode using a CP-select 624 CB capillary column. Analysis was performed by electronic impact ionization. The ions m/z 293 and m/z 181 were selected to quantify FDC and FMCP due to their abundance and to their specificity, respectively. The ion m/z 295 was selected to monitor internal standard. Before extraction, blood samples were stored at −30°C for at least 24 h in order to break the emulsion. The sample preparation procedure involved sample clean-up by liquid–liquid extraction. The bis(F-butyl)ethene was used as the internal standard. For each perfluorochemical compound multiple peaks were observed. The observed retention times were 1.78 and 1.87 min for FDC, and 2.28, 2.34, 2.48 and 2.56 min for FMCP. For each compound, two calibration curves were used; assays showed good linearity in the range 0.0195–0.78 and 0.78–7.8 mg/ml for FDC, and 0.00975–0.39 and 0.39–3.9 mg/ml for FMCP. Recoveries were 90 and 82% for the two compounds, respectively with a coefficient of variation <8%. Precision ranged from 0.07 to 15.6%, and accuracy was between 89.5 and 111.4%. The limits of quantification were 13 and 9 μg/ml for FDC and FMCP, respectively. This method has been used to determine the pharmacokinetic profile of these two perfluorochemical compounds in blood following administration of 1.3 g of FDC and 0.65 g of FMCP per kg body weight, in emulsion form, in rat.  相似文献   

5.
A GC–MS method, using deuterium-labelled 19-noretiocholanolone as internal standard and following an extensive LC purification prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405, 419, 420 and 421, allowed the quantitation of subnanogram amounts of 19-norandrosterone present in 10-ml urine samples at m/z 405. Thirty healthy men, free of anabolic androgen supply, delivered 24-h urine collections in 4 timed fractions. Accuracy was proven by the equation, relating added (0.05–1 ng/ml) to measured analyte, which had a slope not significantly different from 1. Precision (RSD) was 4% at a concentration of 0.4 ng/ml, and 14% at 0.04 ng/ml. Analytical recovery was 82%. The limit of quantitation was 0.02 ng/ml. The excretion ranges were 0.03–0.25 μg/24 h or 0.01–0.32 ng/ml in nonfractionated 24-h urine.Taking into account inter-individual variability and log-normal distribution, a threshold of 19-norandrosterone endogenous concentration of 2 ng/ml, calculated as the geometric mean plus 4 SD, was established. This value corresponds to the decision limit advised by sport authorities for declaring positive (anabolic) doping with nandrolone.  相似文献   

6.
High-temperature headspace solid-phase microextraction (SPME) with simultaneous (“in situ”) derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC–MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane–ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride–pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200°C in a blockheater. The SPME fiber is then injected into the GC–MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 μg/l), barbiturates (500 μg/l), benzodiazepines (100 μg/l), benzoylecgonine (150 μg/l), methadone (100 μg/l) and opiates (200 μg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid–liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.  相似文献   

7.
A new high-performance liquid chromatograhic procedure for simultaneous determination of pyrazinamide (PZA) and its three metabolites 5-hydroxypyrazinamide (5-OH-PZA), pyrazinoic acid (PA), and 5-hydroxypyrazinoic acid (5-OH-PA), in rat urine was developed. 5-OH-PZA and 5-OH-PA standards were obtained by enzymatic synthesis (xanthine oxidase) and checked by HPLC and GC–MS. Chromatographic separation was achieved in 0.01 M KH2PO4 (pH 5.2), circulating at 0.9 ml/min, on a C18 silica column, at 22°C. The limits of detection were 300 μg/l for PZA, 125 μg/l for PA, 90 μg/l for 5-OH-PZA and 70 μg/l for 5-OH-PA. Good linearity (r2>0.99) was observed within the calibration ranges studied: 0.375–7.50 mg/l for PZA, 0.416–3.33 mg/l for PA, 0.830–6.64 mg/l for 5-OH-PZA and 2.83–22.6 mg/l for 5-OHPA. Accuracy was always lower than ±10.8%. Precision was in the range 0.33–5.7%. The method will constitute a useful tool for studies on the influence of drug interactions in tuberculosis treatment.  相似文献   

8.
Metabolites of nandrolone were determined in the urine of several sportsmen, sedentary and post-menopausal women by capillary gas chromatography–mass spectrometry quadrupole (GC–MS) and capillary gas chromatography mass–mass spectrometry ion trap (GC–MS–MS) methods. The method employed was GC–EI-MS with 17α-methyltestosterone as internal standard with ethyl ether extraction prior to selected ion monitoring of the bis(trimethylsilyl) ethers at ion masses m/z 405 and 420 for the nandrolone metabolites, and 418 and 403 for nandrolone derivative. Recovery for nandrolone, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE) was 97.20, 94.17 and 95.54%, respectively. Detection limits for nandrolone, 19-NA and 19-NE were 0.03, 0.01 and 0.06 ng/ml. Metabolites of nandrolone (19-NA and 19-NE) were found in 12.5% (n=40) of sportsmen and 40% (n=10) of post-menopausal women.  相似文献   

9.
A GC method using a novel derivatization reagent, 2′,2′,2-trifluoroethyl chloroformate (TFECF), for the derivatization of primary and secondary aliphatic amines with the formation of carbamate esters is presented. The method is based on a derivatization procedure in a two-phase system, where the carbamate ester is formed. The method is applied to the determination of 1,6-hexamethylene diamine (HDA) in aqueous solutions and human urine, using capillary GC. Detection was performed using thermionic specific detection (TSD) and mass spectrometry (MS)—selective-ion monitoring (SIM) using electron-impact (EI) and chemical ionization (CI) with ammonia monitoring both positive (CI)+ and negative ions (CI). Quantitative measurements were made in the chemical ionization mode monitoring both positive and negative ions. Tetra-deuterium-labelled HDA (TDHDA; H2NC2H2(CH2)4C2H2NH2) was used as the internal standard for the GC—MS analysis. In CI+ the m/z 386 and the m/z 390 ions corresponding to the [M + 18]+ ions (M = molecular ion) of HDA—TFECF and TDHDA—TFECF were measured; in CI the m/z 267 and the m/z 271 ions corresponding to the [M — 101] ions. The overall recovery was found to be 97 ± 5% for a HDA concentration of 1000 μg/l in urine. The minimal detectable concentration in urine was found to be less than 20 μg/l using GC—TSD and 0.5 μg/l using GC—SIM. The overall precision for the work-up procedure and GC analysis was ca. 3% (n = 5) for 1000 μg/l HDA-spiked urine, and ca. 4% (n = 5) for 100 μg/l. The precision using GC—SIM for urine samples spiked to a concentration of 5 μg/l was found to be 6.3% (n = 10).  相似文献   

10.
A simple and rapid method is described for the GC–MS determination of 4-nonylphenols (NOs) and 4-tert-octylphenol (OC) in biological samples. The NOs and OC in the sample are extracted with acetonitrile and the lipid in the sample extract is eliminated by partitioning between hexane and acetonitrile. After Florisil PR column clean-up, the sample extract is analyzed by GC–MS in the selected ion monitoring (SIM) mode. Average recoveries in pale chub (fish) and corbicula (shellfish) are 86.0 and 93.4% for NOs, and 95.8 and 96.4% for OC, respectively, spiked at the levels of 1.0 μg of NOs and 0.1 μg of OC per 5 g of fish and shellfish samples. The detection limits are 20 ng/g for NOs and 2 ng/g for OC.  相似文献   

11.
A gas chromatographic–mass spectrometric method was developed for the quantitative analysis of the three Di(2-ethylhexyl)phthalate (DEHP) metabolites, 2-ethylhexanoic acid, 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in urine. After oximation with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride and sample clean-up with Chromosorb P filled glass tubes, all three organic acids were converted to their tert.-butyldimethylsilyl derivatives. Quantitation was done with trans-cinnamic acid as internal standard and GC–MS analysis in the selected ion monitoring mode (SIM). Calibration curves for all three acids in the range from 20 to 1000 μg/l showed correlation coefficients from 0.9972 to 0.9986. The relative standard deviation (RSD) values determined in the observed concentration range were between 1.3 and 8.9% for all three acids. Here we report for the first time the identification of 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in human urine next to the known DEHP metabolite 2-ethylhexanoic acid. In 28 urine samples from healthy persons we found all three acids with mean concentrations of 56.1±13.5 μg/l for 2-ethylhexanoic acid, 104.8± 80.6 μg/l for 2-ethyl-3-hydroxyhexanoic acid and 482.2± 389.5 μg/l for 2-ethyl-3-oxohexanoic acid.  相似文献   

12.
A rapid and sensitive headspace gas chromatographic and mass spectrometric (GC–MS) method was developed for the determination of acrolein in human urine. A 0.5-ml urine sample in a glass vial containing propionaldehyde as an internal standard was heated at 80°C for 5 min. A 0.1-ml volume of headspace vapor was injected into a GC–MS instrument. Acrolein and propionaldehyde were coeluted at 3.1 min using a DB-1 capillary column, and well separated by selective ion monitoring (SIM) mode using ions m/z 56.05 and m/z 58.05. The interassay and intraassay coefficient of variation were 0.99% and 3.3%. The calibration curve demonstrated a good linearity throughout concentrations ranging from 1 to 1000 nM. However, due to a wide variation of acrolein evaporation rates from human urine, a calibration curve must be established for each urine specimen using a standard addition method and detection limit varied from 1 to 5 nM. The total analysis time for two samples from one urine specimen required about 15 min. Therefore, this method is convenient for the urgent monitoring of urinary acrolein in patients to whom alkylating agents are administered.  相似文献   

13.
A sensitive negative ion chemical ionization (NCI) gas chromatographic–mass spectrometric (GC–MS) method was modified for the quantitation of valproic acid (VPA) metabolites generated from in vitro cDNA-expressed human microsomal cytochrome P450 incubations. The use of the inherent soft ionization nature of electron-capture NCI to achieve high sensitivity enabled us to conduct kinetic studies using small amounts of recombinant human P450 enzymes. The assay is based on the selective ion monitoring of the intense [M−181] fragments of pentafluorobenzyl (PFB) esters in the NCI mode, and has the following features: (1) a micro-extraction procedure to isolate VPA metabolites from small incubation volumes (100 μl); (2) a second step derivatization with tert.-butyldimethylsilylating reagents to enhance sensitivity for hydroxylated metabolites; (3) a short run-time (<30 min) while maintaining full separation of 15 VPA metabolites by using a narrow-bore non-polar DB-1 column plus a new temperature gradient; and (4) good reproducibility and accuracy (intra- and inter-assay RSDs <15%, bias <15%) by using seven deuterated derivatives of analytes as internal standards. The derivatives of mono- and diunsaturated metabolites, like the parent drug, produced abundant [M−181] ions while the hydroxylated metabolites gave an ion at m/z of 273, corresponding to the [M−181] ion of the tert.-butyldimethylsilyl ethers. In conclusion, the GC–NCI-MS analysis of valproate metabolites provided us with a high resolution and sensitivity necessary to conduct metabolic and kinetic studies of valproic acid in small volume samples typical of the in vitro cDNA-expressed micro-incubation enzymatic systems.  相似文献   

14.
Employing high-performance liquid chromatography–electrospray mass spectrometry, we describe a new assay for monitoring 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity. Incubations were carried out with HMG-CoA reductase (rat liver), HMG-CoA and NADPH, and terminated by the addition of HCl. The reaction product, mevalonolactone, and internal standard, were extracted with ethyl acetate, dissolved in methanol, and analyzed by LC–MS. Using an isocratic mobile phase of 10% acetonitrile and 0.1% formic acid (flow-rate, 0.2 ml/min), the protonated molecules of mevalonolactone at m/z 131 and internal standard, β,β-dimethyl-γ-(hydroxymethyl)-γ-butyrolactone, at m/z 145, were detected using selected ion monitoring. The limit of detection was approximately 6.5 pg, and the limit of quantitation was approximately 16.3 pg. Extraction recovery was >90%. The relative standard deviations for intra- and inter-day assays were approximately 4.1±2.7 and 9.4±3.4%, respectively. Mevalonolactone was examined over a period of 3 days and found to be stable. Using this assay, lovastatin and mevastatin inhibited HMG-CoA reductase activity with IC50 values 0.24±0.02 and 2.16±0.31 μM, respectively. These methods offer some advantages over those reported previously which employ radiolabeled substrate and products, and should be useful in searching for compounds that could lower serum cholesterol or alter cell growth and differentiation.  相似文献   

15.
16.
In order to study the disposition of dimethylamphetamine (DMAP) and its metabolites, DMAP N-oxide, methamphetamine (MA) and amphetamine (AP), from plasma to hair in rats, a simultaneous determination method for these compounds in biological samples using gas chromatography–mass spectrometry with selected ion monitoring (GC–MS-SIM) was developed. As DMAP N-oxide partially degrades to DMAP and MA during GC–MS analysis, it was necessary to avoid conditions which co-extract the N-oxide in the sample preparation so as to assure no contribution of artifactual products from DMAP N-oxide in the detection of the other compounds. For confirmation of the satisfactory separation of DMAP N-oxide from the others, the internal standards used for quantification were labeled with different numbers of deuterium atoms. Determination of unchanged DMAP was performed without any derivatization, that of DMAP N-oxide was carried out after conversion into trifluoroacetyl-MA by reaction with trifluoroacetic anhydride, and MA and AP were quantified after trifluoroacetyl-derivatization.After intraperitoneal administration of DMAP HCl to pigmented hairy rats (5 mg kg−1 day−1, 10 days, n=3), concentrations of DMAP and its metabolites in urine, plasma and hair were measured by GC–MS-SIM. The area under the concentration versus time curves (AUCs) of DMAP, DMAP N-oxide, MA and AP in the plasma were 397.2±97.5, 279.7±68.3, 18.4±1.2 and 15.9±2.2 μg min ml−1, while their concentrations in the hair newly grown for 4 weeks after administration were 4.82±0.67. 0.45±0.09, 3.25±0.36 and 0.89±0.05 ng mg−1, respectively. This fact suggested that the incorporation tendency of DMAP N-oxide from plasma into hair was distinctly low in comparison with the other compounds.  相似文献   

17.
A selective assay of olanzapine with liquid chromatography atmospheric pressure chemical ionization (LC–APCI–MS, positive ions) is described. The drug and internal standard (ethyl derivative of olanzapine) were isolated from serum using a solid-phase extraction procedure (C18 cartridges). The separation was performed on ODS column in acetonitrile–50 mM ammonium formate buffer, pH 3.0 (25:75). After analysis of mass spectra taken in full scan mode, a selected-ion monitoring detection (SIM) was applied with the following ions: m/z 313 and 256 for olanzapine and m/z 327 and 270 for the internal standard for quantitation. The limit of quantitation was 1 μg/l, the absolute recovery was above 80% at concentration level of 10 to 100 μg/l. The method tested linear in the range from 1 to 1000 μg/l and was applied for therapeutic monitoring of olanzapine in the serum of patients receiving (Zyprexa™) and in one case of olanzapine overdose. Olanzapine in frozen serum samples and in frozen extracts was stable over at least four weeks. The examinations of urine extracts from patients receiving olanzapine revealed peaks of postulated metabolites (glucuronide and N-desmethylolanzapine).  相似文献   

18.
A simple procedure based upon capillary column gas chromatography-mass spectrometry (GC—MS) is described for the detection and determination of isatin (indole-2,3-dione) in body fluids and tissues. After addition of 5-methylisatin as internal standard to urine or tissue homogenates, organic extracts are dried and derivatized successively with hydroxylamine hydrochloride and the reagent N-tert.-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA). The tert.-butyldimethylsilyl derivatives obtained show good GC—MS properties and allow quantification by selected-ion monitoring of m/z 333 (isatin) and m/z 347 (internal standard). Adult and newborn human urine output values lie in the ranges 0.4–3.2 mg/mmol of creatinine (5–30 mg per 24 h) and 0.002–0.518 mg/mmol of creatinine, respectively. There is a discontinuous regional distribution in rat tissues. The GC—MS properties of a number of derivatives formed by successive reaction of isatin with hydroxylamine hydrochloride (or methoxyaminehydrochloride or ethoxyamine hydrochloride) and MTBSTFA, bis(trimethylsilyl)trifluoroacetamide, pentafluoropropionic anhydride or pentafluorobenzyl bromide are also described.  相似文献   

19.
Benzyl alcohol is commonly used as an antibacterial agent in a variety of pharmaceutical formulations. Several fatalities in neonates have been linked to benzyl alcohol poisoning. Most methods for measuring benzyl alcohol concentrations in serum utilize direct extraction followed by high-performance liquid chromatography. We describe here a novel derivatization of benzyl alcohol using perfluorooctanoyl chloride after extraction from human serum for analysis by gas chromatography–mass spectrometry (GC–MS). The derivative was eluted at a significantly higher temperature respective to underivatized molecule and the method was free from interferences from more volatile components in serum and hemolyzed specimens. Another advantage of this derivatization technique is the conversion of low-molecular-mass benzyl alcohol (Mr 108) to a high-molecular-mass derivative (Mr 504). The positive identification of benzyl alcohol can be achieved by observing a distinct molecular ion at m/z 504 as well as the base peak at m/z 91. Quantitation of benzyl alcohol in human serum can easily be achieved by using 3,4-dimethylphenol as an internal standard. The within run and between run precisions (using serum standard of benzyl alcohol: 25 mg/l) were 2.7% (mean=24.1, S.D.=0.66 mg/l, n=8) and 4.2% (mean=24.3, S.D.=1.03 mg/l, n=8), respectively. The assay was linear for the serum benzyl alcohol concentrations of 2 mg/l to 200 mg/l and the detection limit was 0.1 mg/l. We observed no carry-over (memory effect) problem in our assay as when 2 μl ethyl acetate was injected into the GC–MS system after analyzing serum specimens containing 200 mg/l of benzyl alcohol, we observed no peak for either benzyl alcohol or the internal standard in the total ion chromatogram.  相似文献   

20.
Mexiletine is an antiarrhythmic agent used in the treatment of ventricular arrhythmia. The drug has a narrow therapeutic window which necessitates monitoring its serum concentrations. We describe a gas chromatographic–mass spectrometric analysis of mexiletine using selected ion monitoring. Mexiletine was extracted from alkaline serum with dichloromethane and then derivatized with perfluorooctanoyl chloride. The derivatization reaction was completed in 20 min at 80°C. We used N-propylamphetamine as the internal standard. The ions monitored were m/z 122, 454 and 575 for the derivatized mexiletine and m/z 91, 118, 440 and 452 for the derivatized internal standard. The within-run precision at a serum mexiletine concentration of 1 mg/l was 1.9% (mean=0.98, S.D.=0.019 mg/l, n=7) and the between-run precision was 2.5% (mean=0.99, S.D.=0.025 mg/l, n=7). The assay was linear for serum mexiletine concentrations of 0.2 to 4 mg/l. The detection limit was 0.1 mg/l. The average recoveries of mexiletine and the internal standard were 80% and 84%, respectively at a mexiletine concentration of 1 mg/l. There was no carry over problem in our assay. We observed a good correlation between mexiletine concentrations measured by a reference laboratory (GC) and by our new GC–MS assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号