首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
DNA羟甲基化修饰是基因组表观遗传学的重要调控方式,指5-甲基胞嘧啶(5-m C)在TET蛋白家族的催化作用下氧化生成5-羟甲基胞嘧啶(5-hm C),完成DNA胞嘧啶的去甲基化过程。基因组甲基化异常导致了多种肿瘤的发生,羟甲基化修饰作为去甲基化的一种,同样与肿瘤发生密不可分。在消化系统肿瘤发生发展过程中存在5-hm C含量的变化,其原因可能与TET蛋白家族、IDH突变等密切相关,提示DNA羟甲基化修饰参与了消化系统肿瘤的发生发展过程。本文围绕DNA羟甲基化修饰与消化系统肿瘤之间的关系进行综述,旨在为消化系统肿瘤羟甲基化修饰研究提供新方向。  相似文献   

2.
表观遗传学中的DNA甲基化与疾病的发生发展密不可分. DNA甲基化中的5-甲基胞嘧啶易发生氧化形成5 羟甲基胞嘧啶.此过程又称为羟甲基化修饰,已成为表观遗传学研究的一种新热点.羟甲基化与10-11易位家族蛋白(ten-eleven translocation,TET)的作用密切相关,它参与了基因的表达调控以及DNA去甲基化过程. 最近的羟甲基化研究主要集中在癌症和精神性疾病.针对日趋增多的相关研究,本文对DNA羟甲基化进行了全景式综述.  相似文献   

3.
DNA甲基化是真核生物的重要表观遗传修饰,如胞嘧啶C~5位甲基化5-甲基胞嘧啶(5mC)和腺嘌呤N~6位甲基化6-甲基腺嘌呤(6mA)。DNA 5mC可经Tet双加氧酶催化氧化形成5-羟甲基胞嘧啶(5hmC)、5-醛甲基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC)。这些氧化产物不仅是去甲基化过程的中间体,而且也可能存在各自特有的表观调控功能。其中,5hmC异常可能和癌症相关,有可能成为疾病诊断的生物标志物。发展可靠、高灵敏和抗干扰能力强的DNA甲基化和去甲基化检测技术和方法至关重要,有助于理解甲基化和去甲基化的分子机制以及提高肿瘤的诊断水平。现针对DNA甲基化和去甲基化检测技术进行简要介绍。  相似文献   

4.
DNA羟甲基化修饰主要是指5-甲基胞嘧啶(5-methylcytosine,5m C)在10-11易位(ten-eleven translocation,TET)蛋白家族的氧化作用下生成5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hm C)。5hm C不仅能在去甲基化过程中起重要作用,而且还参与了基因的表达调控。5hm C的含量有着高度的组织特异性,且目前在中枢神经系统中也发现了高水平的5hm C。与神经系统疾病相关的基因中存在明显的5hm C水平的改变,暗示着DNA羟甲基化修饰很可能在神经系统疾病的发生与发展过程中起了重要作用。  相似文献   

5.
DNA甲基化是最主要的表观遗传修饰之一,主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立。细胞分裂过程中甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶成为5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶,从而起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。本文对近年来DNA甲基化修饰酶的结构与功能研究进行讨论。  相似文献   

6.
李滨忠 《生命科学》2012,(6):518-520
DNA甲基化是一种非常重要的表观遗传调控方式,在基因印迹、X染色体失活、转座子与外源DNA的沉默及组织特异性基因的中发挥着重要的作用。在哺乳动物的配子发生过程及从受精到着床的早期胚胎发育阶段,基因组DNA发生大规模的主动去甲基化。但去甲基化的分子机制一直是表观遗传领域的谜题。2009年,Anjana Rao及其同事发现一种DNA双氧化酶TET蛋白能够将5-甲基胞嘧啶氧化成5-羟甲基胞嘧啶,这为DNA去甲基化的机制研究开拓了新的思路。在此基础上,徐国良实验室展开了深入研究,发现TET蛋白能够进一步将5-羟甲基胞嘧啶氧化成5-羧基胞嘧啶,并发现糖苷酶TDG能够特异性地识别并切除DNA中的5-羧基胞嘧啶,进而启动碱基切除修复途径完成DNA去甲基化,从而提出了氧化作用与碱基切除修复途径协同介导的DNA主动去甲基化机制。  相似文献   

7.
DNA甲基化作为一种重要的表观修饰,在基因表达调控及胚胎生长发育等方面起到重要作用。尽管5-甲基胞嘧啶(5mC)是一种稳定的共价修饰,但它在生物体内仍处于一个动态变化的过程,也就是说,它可能会通过某种方式发生去甲基化。而TET蛋白功能的揭示为DNA主动去甲基化提供了一条途径:TET双加氧酶可以将5mC迭代氧化形成5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),再通过DNA糖苷酶TDG介导的碱基切除修复(base excision repair,BER)途径将5mC重新变为未修饰的胞嘧啶。随着人们对TET双加氧酶及主动去甲基化研究的深入,主动去甲基化的生物学功能也被逐渐揭示。现总结了已经揭示的主动去甲基化分子机制和生物学意义,同时,概括了本实验室近些年的研究进展。  相似文献   

8.
TET(ten-eleven translocation)蛋白属于酮戊二酸和Fe2+依赖的双加氧酶,能够产生催化氧化作用。在TET蛋白家族的催化氧化作用下5-甲基胞嘧啶(5-methylcytosine,5mC)可转化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC),并可进一步转化为5-甲酰胞嘧啶(5-formylcytosine,5fC)和5-羧基胞嘧啶(5-carboxylcytosine,5caC)。TET蛋白在DNA胞嘧啶的去甲基化、胚胎发育和基因重新编码等过程都存在重要作用,其中TET蛋白参与DNA胞嘧啶的去甲基化过程的作用机制一直是研究热点,另外,有研究发现TET与肿瘤的发生也存在联系,可能成为新的肿瘤分子标志。  相似文献   

9.
《遗传》2020,(7)
DNA羟甲基化作为一种表观遗传学修饰,对基因的表达调控起到了重要作用。近年来,越来越多的研究发现在心血管疾病中可见5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)和染色体10/11易位(ten-eleven translocation,TET)家族蛋白的异常改变,提示这些心血管疾病与DNA羟甲基化的调控密切相关。DNA羟甲基化水平与动脉粥样硬化常见的危险因素如衰老、性别、高血压和吸烟存在一定关联,并且和动脉粥样硬化发生过程中所涉及的免疫炎症反应以及内皮细胞和血管平滑肌细胞的功能相关。本文综述了DNA羟甲基化和TET家族蛋白对于动脉粥样硬化的作用机制及研究现状,以期为动脉粥样硬化的发生发展及诊断治疗提供表观遗传学方面的研究思路。  相似文献   

10.
DNA羟甲基化是继DNA甲基化之后发现的又一重要的表观遗传修饰,在基因的表达调控、染色体重塑等方面有着重要功能。TET2(ten-eleven-translocation 2,TET2)基因作为调控DNA羟甲基化形成的TET家族蛋白的成员之一,能够催化5甲基胞嘧啶(5-methyl-cytosine,5m C)形成5羟甲基胞嘧啶(5-hydroxymethyl-cytosine,5hm C),在表观遗传学中具有重要的地位。近年来,在骨髓增生性肿瘤(myeloproliferative neoplasms,MPN)、系统性肥大细胞增生症(systemic mastocytosis,SM)、慢性骨髓单核细胞性白血病(chronic myelomonocytic leukemia,CMML)和骨髓增生异常综合征(myelodysplastic syndrome,MDS)等疾病中均发现了TET2的突变,并影响了5m C和5hm C含量的变化。对TET2突变的研究仍是一个很新颖的课题,TET2在不同疾病中突变的位置和类型以及对其功能的影响尚处于探索研究之中。本文对各类疾病中发现的TET2突变及其功能的影响进行了综述,深入阐述了TET2的突变对拓展DNA去甲基化和寻找疾病新靶标具有的潜在应用价值。  相似文献   

11.
In mammals, DNA methylation and hydroxymethylation are specific epigenetic mechanisms that can contribute to the regulation of gene expression and cellular functions. DNA methylation is important for the function of embryonic stem cells and adult stem cells (such as haematopoietic stem cells, neural stem cells and germline stem cells), and changes in DNA methylation patterns are essential for successful nuclear reprogramming. In the past several years, the rediscovery of hydroxymethylation and the TET enzymes expanded our insights tremendously and uncovered more dynamic aspects of cytosine methylation regulation. Here, we review the current knowledge and highlight the most recent advances in DNA methylation and hydroxymethylation in embryonic stem cells, induced pluripotent stem cells and several well‐studied adult stems cells. Our current understanding of stem cell epigenetics and new advances in the field will undoubtedly stimulate further clinical applications of regenerative medicine in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.  相似文献   

13.
Endometriosis affects 10% of reproductive‐aged women. It is characterized by the growth of the endometrium, outside the uterus and is associated with infertility and chronic abdominal pain. Lack of noninvasive diagnostic tools and early screening tests results in delayed treatment and subsequently increased disease severity. Endometriosis is a disease associated with a deregulated hormonal response, therefore, understanding the molecular mechanisms that govern this hormonal interplay is of paramount importance. DNA methylation is an epigenetic mark that regulates gene expression and is often associated with genes that code for steroid receptors and enzymes associated with estrogen synthesis and metabolism in endometriosis. DNA hydroxymethylation, which is structurally similar to methylation but functionally different, is a biologically critical mechanism that is also known to regulate gene expression. Ten Eleven Translocation (TET) proteins mediate hydroxymethylation. However, the role of DNA hydroxymethylation or TETs in the endometrium remains relatively unexplored. Currently, the “gold standard” technique used to study methylation patterns is bisulfite genomic sequencing. This technique also detects hydroxymethylation but fails to distinguish between the two, thereby limiting our understanding of these two processes. The presence of TETs in the male and female reproductive tract and its contribution to endometrial cancer makes it an important factor to study in endometriosis. This review summarizes the role of DNA methylation in aberrant steroid hormone signaling and hypothesizes that hydroxymethylation could be a factor influencing hormonal instability seen in endometriosis.  相似文献   

14.

Background

Cytosine methylation of DNA is conserved across eukaryotes and plays important functional roles regulating gene expression during differentiation and development in animals, plants and fungi. Hydroxymethylation was recently identified as another epigenetic modification marking genes important for pluripotency in embryonic stem cells.

Results

Here we describe de novo cytosine methylation and hydroxymethylation in the ciliate Oxytricha trifallax. These DNA modifications occur only during nuclear development and programmed genome rearrangement. We detect methylcytosine and hydroxymethylcytosine directly by high-resolution nano-flow UPLC mass spectrometry, and indirectly by immunofluorescence, methyl-DNA immunoprecipitation and bisulfite sequencing. We describe these modifications in three classes of eliminated DNA: germline-limited transposons and satellite repeats, aberrant DNA rearrangements, and DNA from the parental genome undergoing degradation. Methylation and hydroxymethylation generally occur on the same sequence elements, modifying cytosines in all sequence contexts. We show that the DNA methyltransferase-inhibiting drugs azacitidine and decitabine induce demethylation of both somatic and germline sequence elements during genome rearrangements, with consequent elevated levels of germline-limited repetitive elements in exconjugant cells.

Conclusions

These data strongly support a functional link between cytosine DNA methylation/hydroxymethylation and DNA elimination. We identify a motif strongly enriched in methylated/hydroxymethylated regions, and we propose that this motif recruits DNA modification machinery to specific chromosomes in the parental macronucleus. No recognizable methyltransferase enzyme has yet been described in O. trifallax, raising the possibility that it might employ a novel cytosine methylation machinery to mark DNA sequences for elimination during genome rearrangements.  相似文献   

15.
Molecular and Cellular Biochemistry - DNA hydroxymethylation plays a very important role in some biological processes, such as DNA methylation process. In addition, its presence can also cause some...  相似文献   

16.
DNA甲基化和去甲基化的研究现状及思考   总被引:1,自引:0,他引:1  
邓大君 《遗传》2014,36(5):403-410
DNA甲基化通过调节基因转录、印记、X染色体灭活和防御外源性遗传物质入侵等, 在细胞分化、胚胎发育、环境适应和疾病发生发展上发挥重要作用, 是当前表观遗传学研究的热点领域之一。文章介绍了在过去几年中TET介导的DNA羟甲基化及其在早期胚胎发育中的作用, DNA主动去甲基化及其与被动去甲基化的关系, DNA甲基化建立及其与组蛋白修饰、染色质构象、多梳蛋白和非编码RNA结合等关系方面的重要研究进展和存在的问题以及DNA甲基化的转化应用前景。  相似文献   

17.
A recently published study has revealed the genome-wide dynamics of DNA methylation and hydroxymethylation patterns at single-base resolution in the human and mouse developing brain.  相似文献   

18.
Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.   相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号