首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Tn10 insertion in the galS (ultrainduction factor) gene of Escherichia coli allows the gal operon to be constitutively expressed at a very high level, equal to that seen in a delta galR strain in the presence of an inducer. The insertion has been mapped by criss-cross Hfr matings and by marker rescue into Kohara phages at 46 min on the E. coli chromosome.  相似文献   

2.
3.
The galR gene, which encodes the Gal repressor protein in Escherichia coli, has been fused to the strong pL promoter of bacteriophage lambda in plasmid pKC31. The pL promoter is kept repressed by a thermolabilie lambda repressor, CIts857, to prevent cell killing. Heat induction of the pL-galR fusion plasmid synthesizes large amounts of active Gal repressor. The protein has been purified to homogeneity in three steps. The purification is greatly aided by the reversible insolubility of active repressor in crude extract at salt concentrations of less than 200 mM. The amino-terminal amino acid sequence determined by automated Edman degradation is: N-Ala-Thr-Ile-Lys-Asp-Val-Ala-Arg-Leu-Ala-Gly-Val-Ser-Val-Ala-Thr-Val-. Comparison of this sequence with that deduced from the DNA sequence of the galR gene showed that the formyl methionine residue preceding alanine at position 1 is cleaved off. The repressor is present in solution as a dimer of a 37-kDa subunit. The protein binds to gal DNA containing wild type and not mutant operator sequences. As predicted, this sequence-specific binding is inhibited by the presence of D-galactose or D-fucose, both of which are in vivo inducers of the gal operon. Gal repressor inhibits the expresison of gal operon by binding to two spatially separated operators which flank, but do not overlap, the gal promoter segment. Experiments to study the mechanism of repressor action are discussed.  相似文献   

4.
Previous studies showed that nonsense mutations in either of two genes (capR or capS) or an undefined mutation in a third gene (capT) led to pleiotropic effects: (i) increased capsular polysaccharide synthesis (mucoid phenotype); (ii) increased synthesis of enzymes specified by at least four spatially separated operons involved in synthesis of capsular polysaccharide including the product of the galE gene, UDP-galactose-4-epimerase (EC 5.1.3.2) in capR mutants. The present study demonstrated that the entire galactose (gal) operon (galE, galT, and galK) is derepressed by mutations in either the capR or the capT genes, but not by mutation in capS. Double mutants (capR9 capT) were no more derepressed than the capR9 mutant, indicating that capR9 and capT regulate the gal operon via a common pathway. Isogenic double mutants containing either galR(+), galR(-), galR(s), or galO(c) in combination with either capR(+) or capR9 were prepared and analyzed for enzymes of the gal operon. The results demonstrated that capR9 caused derepression as compared to capR(+) in all of the combinations. Strains with a galR(s) mutation are not induced, for the gal operon, by any galactose compound including d-fucose, and this was confirmed in the present study using d-fucose. Nevertheless, the derepression of galR(s) capR9 compared to galR(s) capR(+) was four- to sixfold. The same derepression was observed when galR(+)capR9 was compared to galR(+)capR(+). The data eliminate the explanation that internal induction of the gal operon by a galactose derivative was causing increased gal operon enzyme synthesis in capR or capT mutants. Furthermore, the same data suggest that the galR and capR genes are acting independently to derepress the gal operon. A modified model for the structure of the gal operon is proposed to explain these results. The new feature of the model is that two operator sites are suggested, one to combine with the galR repressor and one to combine with the capR repressor.  相似文献   

5.
6.
7.
Nucleotide sequence of Klebsiella pneumoniae lac genes.   总被引:10,自引:8,他引:2       下载免费PDF全文
The nucleotide sequences of the Klebsiella pneumoniae lacI and lacZ genes and part of the lacY gene were determined, and these genes were located and oriented relative to one another. The K. pneumoniae lac operon is divergent in that the lacI and lacZ genes are oriented head to head, and complementary strands are transcribed. Besides base substitutions, the lacZ genes of K. pneumoniae and Escherichia coli have suffered short distance shifts of reading frame caused by additions or deletions or both during evolutionary divergence from a common ancestral gene. Relative to corresponding E. coli sequences, the nucleotide sequences of the lacZ and lacY genes are 61 and 67% conserved, and the lacI genes are 49% conserved. A comparison of both nucleotide and amino acid sequences revealed that the K. pneumoniae and E. coli lacI genes and lac repressor proteins each are related to the galR gene and gal repressor of E. coli to about the same extent. In terms of evolutionary relationships, the divergence of the forerunner of the galR gene from an ancestral lac repressor gene preceded separation and differentiation of the K. pneumoniae and E. coli lac repressor genes.  相似文献   

8.
We studied the following two aspects of the glucose effect on galactose operon expression in Escherichia coli K-12: catabolite repression and inducer exclusion. Using both inducible and constitutive strains and measuring the rate of promoter-proximal enzyme synthesis, we found that the galactose operon did not seem to exhibit catabolite repression. The only glucose effect on galactose operon expression which we observed was inducer exclusion, as shown by the existence of diauxic growth in the presence of glucose and galactose. This diauxie was not relieved by cyclic adenosine 3',5'-monophosphate. Cyclic adenosine 3',5'-monophosphate did not seem to be an antagonist of any glucose effect on galactose operon expression; its only effect was to stimulate promoter-distal gene expression.  相似文献   

9.
10.
MexAB-OprM is a multidrug efflux system that contributes to intrinsic and acquired multidrug resistance in Pseudomonas aeruginosa, the latter as a result of mutational hyperexpression of the mexAB-oprM operon. While efflux gene hyperexpression typically results from mutations in the linked mexR repressor gene, it also occurs independently of mexR mutations in so-called nalC mutants that demonstrate more modest mexAB-oprM expression and, thus, more modest multidrug resistance than do mexR strains. Using a transposon insertion mutagenesis approach, nalC mutant strains were selected and the disrupted gene, PA3721, identified. Amplification and sequencing of this gene from previously isolated spontaneous nalC mutants revealed the presence of mutations in all instances and as such, PA3721 has been renamed nalC. PA3721 (nalC) encodes a probable repressor of the TetR/AcrR family and occurs upstream of an apparent two-gene operon, PA3720-PA3719, whose expression was negatively regulated by PA3721. Thus, PA3720-PA3719 was hyperexpressed in transposon insertion and spontaneous nalC mutants. The loss of PA3719 but not of PA3720 expression in a spontaneous nalC mutant reduced MexAB-OprM expression to wild-type levels and compromised multidrug resistance, an indication that hyperexpression of PA3719 only was necessary for the nalC phenotype. Introduction of PA3719 into wild-type P. aeruginosa on a multicopy plasmid was, in fact, sufficient to promote elevated MexAB-OprM expression and multidrug resistance characteristic of a nalC strain. Thus, the nalC (PA3721) mutation serves only to enhance PA3720-PA3719 expression, with expression of PA3719 (encodes a 53 amino acid protein of predicted pI 10.4) directly or indirectly impacting MexAB-OprM expression. Intriguingly, nalC strains produce markedly elevated levels of stable MexR protein suggesting that PA3720-PA3719 hyperexpression somehow modulates MexR repressor activity. The deduced products of PA3720-PA3719 show no homology to sequences presently in the GenBank databases, however, and as such provide no clues as to how this might occur.  相似文献   

11.
The cryptic asc (previous called "SAC") operon of Escherichia coli K12 has been completely sequenced. It encodes a repressor (ascG); a PTS enzyme IIasc for the transport of arbutin, salicin, and cellobiose (ascF); and a phospho-beta-glucosidase that hydrolyzes the sugars which are phosphorylated during transport (ascB). ascG and ascFB are transcribed from divergent promoters. The cryptic operon is activated by the insertion of IS186 into the ascG (repressor) gene. The ascFB genes are paralogous to the cryptic bglFB genes, and ascG is paralogous to galR. The duplications that gave rise to these paralogous genes are estimated to have occurred approximately 320 Mya, a time that predates the divergence of E. coli and Salmonella typhimurium.  相似文献   

12.
13.
14.
The isolation and characterization of altered repressors of the lac operon which have an increased affinity for an operator should give useful clues about the molecular basis for the very tight and specific interaction between repressor and operator. A selection system has been devised which allows the isolation of such repressor mutants. This system selects for mutant repressors which can overcome lac operator-constitutive (Oc) mutations. By using in vivo assays, 24 candidates were obtained which, compared with wild type, have an increased trans effect of their repressor on one or several Oc operators. Three of these candidates have been investigated in vitro; the affinity of their repressor for inducer was unchanged, whereas the affinity for wild-type operator was increased 15-, 86-, and 262-fold, respectively.  相似文献   

15.
16.
17.
18.
In Salmonella typhimurium the genes coding for the enzymes of histidine utilization (hut) are clustered in two adjacent operons, hutMIGC and hut(P,R,Q)UH. A single repressor, the product of the C gene, regulates both operons by binding at two operator sites, one near M and one in (P,R,Q). The deoxyribonucleic acid (DNA)-binding activity of the repressor was measured using DNA's containing separate operators. The repressor had greater activity when assayed using DNA containing the operator of the (P,R,Q)UH operon than when assayed using DNA containing the operator of the MIGC operon. The binding to either operator was absent in the presence of the inducer, urocanate. The DNA-binding activities were also determined for two super-repressors. The super-repressors had altered DNA-binding properties, although the self-regulated nature of the repressors complicated the analysis of the results. A purfication procedure for the wild-type repressor is presented. The purified repressor was somewhat unstable, and additional experiments using it were not performed.  相似文献   

19.
Effect of catabolite repression on the mer operon   总被引:4,自引:2,他引:2       下载免费PDF全文
The plasmid-determined mer operon, which provides resistance to inorganic mercury compounds, was subject to a 2.5-fold decrease in expression when glucose was administered at the same time as the inducer HgCl2. This glucose-mediated transient repression of the operon was overcome by the addition of cyclic AMP. Permanent catabolite repression of the operon was observed in the 1.6- to 1.9-fold decrease in expression in mutants lacking either adenyl cyclase (cya) or the catabolite activator protein (crp). The effect of the cya mutation on mer expression could be overcome by the addition of cyclic AMP at the time of induction, In addition to these effects on the whole cells of a wild-type strains, we examined the effect of catabolite repression on the expression of the mercuric ion [Hg(II)] reductase enzyme, assayable in cell extracts, and on the Hg(II) uptake system, assayable in a mutant strain which lacked reductase activity. There was a two- to threefold effect of repression on the Hg(II) reductase enzyme assayable in vitro after induction under catabolite repressing conditions (either with glucose or in the crp and cya mutants). We did not find a similar repressing effect on the induction of the Hg(II) uptake system, which is also determined by the mer operon.  相似文献   

20.
T J Daly  K S Matthews 《Biochemistry》1986,25(19):5474-5478
A monomeric mutant lactose repressor protein (T-41), containing serine at position 282 in place of tyrosine [Schmitz, A., Schmeissner, U., Miller, J. H., & Lu, P. (1976) J. Biol. Chem. 251, 3359-3366], has been purified by a series of chromatographic and precipitation methods. The molecular weight of the mutant as determined by gel filtration was approximately 40,000. The inducer equilibrium binding constant for the mutant was comparable to that of the tetrameric wild-type repressor at pH 7.5, whereas operator DNA binding was not detectable. In contrast to wild-type repressor, equilibrium and kinetic rate constants for inducer binding to the monomer were largely independent of pH; thus, the quaternary structure of the wild-type repressor is required for the pH-associated effects on inducer binding. Although ultraviolet absorbance difference spectra indicated that inducer binding to T-41 protein elicited different changes in the environment of aromatic residues from those generated in wild-type repressor, the shift in the fluorescence emission maximum in response to inducer binding was similar for T-41 and wild-type repressors. Similarity in 1-anilinonaphthalene-8-sulfonic acid binding to monomer and tetramer suggests that this fluorophore does not bind at subunit interfaces. Modification of Cys-281 with methyl methanethiosulfonate was observed at low molar ratios of reagent per T-41 monomer (4-fold). This result is in contrast to data observed for tetrameric wild-type repressor which requires high molar ratios for this cysteine to react. We conclude that Cys-281, adjacent to the site of the T-41 mutation, is located on the surface of the monomer in this region crucial for subunit interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号