首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
The alimentary canal of the two‐spot ladybird Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae) presents the foregut (stomodeum), the midgut (mesenteron) and the hindgut (proctodeum). The shortest region is the foregut and the longest is the midgut. The relative proportions of the main regions were found to be similar for males and females. In the foregut it was possible to distinguish the pharynx, the esophagus and the proventriculus but no crop. The hindgut is composed of the ileum, rectum and rectal canal. Generally the organ width is similar for males and females, but females presented a wider proventriculus. The epithelium of the foregut varied from squamous to simple cuboidal and columnar. In the midgut the epithelium is simple columnar with goblet and regenerative cells. The epithelium of the hindgut varied from simple cuboidal to squamous. Females presented thicker midgut epithelium whereas males presented thicker epithelium in the esophagus. The anatomy of the alimentary canal of A. bipunctata seems to conform to its carnivorous and recent phylogenetic status within the family Coccinellidae.  相似文献   

3.
Anatomical features of basal leaves, pedicels and tepals of 22 species of Gagea belonging to four sections (Platyspermum, Plecostigma, Gagea and Didymobulbos) are investigated. Anatomical characters are mapped onto a molecular phylogenetic tree and their evolution is evaluated. The systematic importance of the anatomical characters is discussed. Anatomical characters are more systematically useful in the Irano‐Turanian taxa than in Euro‐Siberian taxa. The presence of collenchyma and/or sclerenchyma and the pentagonal outline of the transverse section of the basal leaf is found in Irano‐Turanian taxa of section Platyspermum and is mostly absent in Euro‐Siberian taxa. A diagnostic key based on combined anatomical characters is provided. The level of variation in anatomical characters is greater in the basal leaf than the pedicel and lowest in the tepals. Convergent evolution in anatomical characters is associated with ecological shifts between sunny, open, dry habitats and closed, humid habitats. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 155–177.  相似文献   

4.
The Characinae is a subunit of the Characidae of special significance in including Charax, the type genus of the family and the order Characiformes. Twelve genera and 79 species have been traditionally assigned to the Characinae, but the subfamily still lacks a phylogenetic diagnosis. Herein, a data matrix including 150 morphological characters and 64 taxa (35 species representing all genera of the Characinae and 29 included in other lineages within the Characiformes) was submitted to two cladistic analyses that differ in the inclusion/exclusion of Priocharax due to the difficulty of coding most of the character states in the miniature species of this genus. Both analyses resulted in a non‐monophyletic Characinae and this subfamily is herein restricted to only seven of the original 12 genera forming the clade (Phenacogaster((Charax Roeboides)(Acanthocharax(Cynopotamus(Acestrocephalus Galeocharax))))), which is supported by ten non‐ambiguous synapomorphies and is more closely related to other genera of the Characidae than those traditionally placed in the subfamily. A second clade includes the members of the tribe Heterocharacini (Lonchogenys(Heterocharax Hoplocharax)) as the sister‐group of Gnathocharax, supported by seven non‐ambiguous synapomorphies. This clade is more closely related to a taxon formed by Roestes and Gilbertolus based on seven non‐ambiguous synapomorphies. Results do not corroborate a close relationship between RoestesGilbertolus and the Cynodontinae. Inclusion of the genus Priocharax suggests that it is related more closely to the Heterocharacini, but the profound modifications in its anatomy possibly related to ontogenetic truncations obscure a better understanding of its relationships. A new classification of the Characinae and the Heterocharacinae is proposed. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 809–915.  相似文献   

5.
Linaria incarnata has been treated as a widely distributed Ibero‐North African species in the latest taxonomic reviews. Morphological and phylogenetic disparity between populations of this species has been previously reported. Here we present new morphological and phylogenetic evidence for the disintegration of L. incarnata into three distinct species: L. incarnata from the western Iberian Peninsula; L . mamorensis sp. nov. from north‐western Morocco; and L. onubensis from south‐western Spain. The relatively poor morphological differentiation between these taxa (which can be regarded as cryptic species) and their distinct phylogenetic positions indicate that characters of the L. incarnata morphotype have been acquired multiple times in the evolution of Linaria section Versicolores. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 00, 000–000.  相似文献   

6.
Comparative phylogeography is underpinned by the assumption that sympatrically‐distributed taxa will have experienced similar environmental histories, resulting in broadly congruent spatial structuring of phylogenetic lineages, particularly if they inhabit similar niches. However, divergent local conditions, specifically those related to microhabitat, may produce significantly divergent systematic signatures of demographic histories. In the present study, we compare the phylogenetic and population genetic spatial patterns displayed by two species of niche‐separated (but sympatrically distributed) Australian funnel web spiders (Mygalomorphae: Hexathelidae). We demonstrate that an apparently minor disparity in habitat niche has led to divergent experiences of a common environmental history in the saproxylic Hadronyche cerberea and the ground‐burrowing Atrax sutherlandi. Furthermore, we take a crucial first step in documenting the molecular systematics of a group that has traditionally suffered from a dearth of research interest. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 805–819.  相似文献   

7.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

8.
The monophyly and phylogeny of the adaptive radiation of Hawaiian finches (Fringillidae: Drepanidini; honeycreepers, auct.) were studied using parsimony analysis of comparative osteology, combined with Templeton (Wilcoxon signed‐ranks) tests of alternative phylogenetic hypotheses. Eighty‐four osteological characters were scored in 59 terminal taxa of drepanidines, including 24 fossil forms, and in 30 outgroup species. The optimal phylogenetic trees show considerable agreement, and some conflict, with independently derived ideas about drepanidine evolution. The monophyly of a large Hawaiian radiation was upheld, although one fossil taxon from Maui fell outside the drepanidine clade. The finch‐billed species were placed as basal drepanidine taxa, and continental cardueline finches (Carduelini) were identified as the radiation's closest outgroups. The study found anatomical as well as phylogenetic evidence that the radiation had a finch‐billed ancestor. The optimal trees identify the red‐and‐black plumage group as a clade, and suggest that the tubular tongue evolved only once in the radiation. Because comparative osteology provides too few characters to strongly support all the nodes of the tree, it was helpful to evaluate statistical support for alternative hypotheses about drepanidine relationships using the Templeton test. Among the alternatives that received significant statistical support are a relationship of the drepanidines with cardueline finches rather than with the Neotropical honeycreepers (Thraupini), classification of the controversial genera Paroreomyza and Melamprosops as drepanidines, and a secondary loss of the tubular tongue in Loxops mana. The hypothesis of monophyly for all the Hawaiian taxa in the study was not rejected statistically. The study provides a framework for incorporating morphological and palaeontological information in evolutionary studies of the Drepanidini. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 141 , 207–255.  相似文献   

9.
Caecilian morphology is strongly modified in association with their fossorial mode of life. Currently phylogenetic analyses of characters drawn from the morphology of caecilians lack resolution, as well as complementarity, with results of phylogenetic analyses that employ molecular data. Stemming from the hypothesis derived from the mammal literature that the braincase has the greatest potential (in comparison to other cranial units) to yield phylogenetic information, the braincase and intimately associated stapes of 27 species (23 genera) of extant caecilians were examined using images assembled via microcomputed tomography. Thirty‐four new morphological characters pertaining to the braincase and stapes were identified and tested for congruence with previously recognized morphological characters. The results reveal that when added to previous character matrices, characters of the braincase and stapes resolve generic‐level relationships in a way that is largely congruent with the results of molecular analyses. Analysis of a combined data set of molecular and morphological data provides a framework for conducting ancestral character state reconstructions, which resulted in the identification of 95 new synapomorphies for various clades and taxa, 27 of which appear to be unique for the taxa that possess them. Together these data demonstrate the utility of the application of characters of the braincase and stapes for resolving phylogenetic relationships for a group whose morphology is largely confounded by functional modifications. In addition this study provides evidence of the utility of the braincase in resolving problematic morphology‐based phylogeny outside of Amniota, in an amphibian group. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 160–201.  相似文献   

10.
We present a phylogenetic and taxonomic study of the morphology and biology of the terminal‐instar larval stage of 19 species representing all the genera of Torymidae parasitoids of gall wasps in Europe, with the single exception of Megastigmus. The genera studied include Adontomerus Nikol'skaya, Idiomacromerus Crawford, Chalcimerus Steffan & Andriescu, Glyphomerus Förster, Pseudotorymus Masi and Torymus Dalman. We primarily used chaetotaxy and some head structures. The terminal‐instar larvae of all studied species are thoroughly described for the first time and illustrated with SEM images. We provide diagnostic characters for the family and the genera studied, and keys to genera and species for the identification of torymid larvae associated with cynipid galls. The majority of the torymid larvae studied are solitary monophagous parasitoids. Finally, to assess the potential use of larval characters in systematic studies of the family, a phylogenetic analysis of the studied taxa based on 42 larval morphological characters is proposed and compared with the current taxonomy of Torymidae. Our results suggest that body chaetotaxy, and characters of the head and mouthparts could be used for genera and species discrimination. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 676–721.  相似文献   

11.
Since the erection of the weevil subfamily Baridinae by Schönherr in 1836, no phylogenetic hypothesis using cladistic methods has been proposed for this extraordinarily diverse group. This study provides the first hypothesis for the evolution of Baridinae using phylogenetic methods, including 301 taxa and 113 morphological characters. Despite fairly well‐resolved results, indicating paraphyly of nearly all of the currently recognized intrasubfamilial divisions, no change to the current classification is made. Even though groupings are proposed based on the final results, it is believed that more rigorous analyses need to be made prior to a re‐evaluation and subsequent alteration of the current classification. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   

12.
Providing another spectacular model for understanding speciation and radiation, the origin of the gastropod species flock in Lake Tanganyika (with an estimated age of approximately 12 Myr) remained enigmatic to date. Although, for a long time, an in situ radiation was assumed, Lake Tanganyika could have functioned as a reservoir for ancient African lineages, implying that the now lacustrine taxa originiated elsewhere. However, the fluviatile gastropod fauna of adjacent river systems in Central and East Africa is only poorly known. Here, we provide conchological, anatomical, phylogenetical, and biogeographical data on the fluviatile genus Potadomoides Leloup, 1953, which was hitherto regarded as ancestral to the entire Tanganyika gastropod radiation. The type species Potadomoides pelseneeri is restricted to the delta region of the Malagarasi River east of Lake Tanganyika, whereas three congeneric species (Potadomoides bequaerti, Potadomoides hirta, and Potadomoides schoutedeni) inhabit the Congo River with its tributaries Lualaba and Luvua, west of the Tanganyikan Rift. We describe and document, with scanning electron microscopy, the ontogenetic development of embryos of this uterine brooder as well as the detailed reproductive anatomy. Phylogenetic analysis of 44 morphological characters (including adult and embryonic shell, operculum, radula, reproductive tract) for 15 paludomid taxa could not support monophyly of the Tanganyika species flock. Instead, we found two major lineages that colonized Lake Tanganyika independently, one comprising the Nassopsinae Kesteven, 1903 (= Lavigeriinae Thiele, 1925) with the riverine Potadomoides plus the lacustrine Lavigeria and Vinundu, the second comprising the riverine Cleopatra together with the rest of the lacustrine species (except for Tiphobia horei). The analysis identifies Potadomoides as paraphyletic, with the uterine brooder P. pelseneeri being the sister taxon to the uterine brooder Lavigeria plus the oviparous Vinundu, but not to the entire Tanganyika species flock. We reconstruct the independent evolution of an fluviolacustrine taxon Nassopsinae for which we evaluate the synapomorphic characters, in particular those of reproductive biology, and discuss systematic and evolutionary implications of repeated origin of (ovo‐)viviparity in these limnic Cerithioidea. Finally, we outline a hypothesis on the evolutionary history of Potadomoides in the context of the gastropod radiation in Lake Tanganyika. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 367–401.  相似文献   

13.
Erysimum includes 150–350 species distributed in the Northern Hemisphere, with Eurasia being the centre of greatest diversity. It is well known for its taxonomic complexity as a result of overlapping morphological characters. We present the first densely sampled phylogenetic analysis of Erysimum using internal transcribed spacer (ITS) DNA sequences from c. 85% of the species (117 for the first time), representing the full range of morphological variation and geographical distribution. We used several approaches to reconstruct phylogenetic relationships, dating of diversification and patterns of evolution of morphological characters in the genus. Ancestral‐state reconstructions of four morphological diagnostic characters were performed using maximum parsimony, maximum likelihood and Bayesian methods. Our phylogenetic framework strongly supports the monophyly of Erysimum and recovers some well‐supported clades that are geographically, rather than morphologically, correlated. Our study confirms the placement of Erysimum in lineage I and reveals two Malcolmia spp. (M. maritima and M. orsiniana) as its sister taxa. The results suggest that the biennial duration and caespitose habit (vs. annual or perennial duration and herbaceous or woody habit) and large, yellow, glabrous (vs. small, non‐yellow, pubescent) petals are ancestral in Erysimum. The ancestral‐state reconstruction results show that annual vs. perennial and woody vs. herbaceous features have been independently derived several times. The dating analyses suggest an early radiation of Erysimum during the late Pliocene or early Pleistocene. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 497–522.  相似文献   

14.
Geometric morphometric techniques allow for the direct quantification and analysis of variation in biological shape and have been used in studies in systematic biology. However, these techniques have not been used for species discrimination in the gastropod genus Conus, a major taxon of significant tropical reef predators recognized for their peptide‐based toxins. Here, we used landmark digitization and analysis to show that five species commonly studied for their conotoxins –Conus consors, Conus miles, Conus stercusmuscarum, Conus striatus, and Conus textile – can be effectively distinguished from each other by their shape, as manifested in the results of a principal components analysis (PCA) and the generated thin‐plate splines. Two piscivorous species, C. stercusmuscarum and C. striatus, show clear overlaps in the PCA plot, although each taxon clusters within itself, as does each of the others. The loadings on the first two principal components show that the forms of the shells' aperture and spire are particularly important for discrimination. Phylogenetic analysis using neighbour‐joining methods shows that group separations are comparable with published phylogenetic schemes based on molecular data and feeding mode (i.e. piscivory, vermivory, molluscivory). The results of this study establish the utility of geometric morphometric methods in capturing the interspecific differences in shell form in the genus Conus. This may lead to the utilization of these methods on other gastropod taxa and the creation of species‐recognition programs based on shell shape. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 296–310.  相似文献   

15.
Little information on evolutionary relationships of Neotropical organisms or on the factors that have shaped the diversity currently encountered in this region is available. However, it is clear that biotic interactions and abiotic aspects have played important roles for species diversification in the region. This study focuses on Dolichandra (Bignonieae, Bignoniaceae), a clade of Neotropical lianas that is distributed broadly across different habitats and with diverse pollination and dispersal systems. We used sequences from two plastid DNA markers (ndhF and rpl32‐trnL) and one nuclear gene (PepC) to infer phylogenetic relationships in Dolichandra using parsimony and Bayesian approaches. We then used this phylogenetic framework as basis to study the biogeographic history, reconstruct the evolution of morphological characters and test the impact of morphology and environment on the diversification of the genus. More specifically, we: (1) time‐calibrate the phylogenetic tree of Dolichandra; (2) estimate the ancestral areas of the various lineages; (3) estimate the ancestral states of discrete and continuous morphological traits; (4) test for phylogenetic signal in environmental and phenotypic data; and (5) test whether morphological characters and/or niche evolution are correlated with cladogenesis. All Dolichandra spp. are monophyletic in the combined molecular phylogeny; relationships among species are generally well resolved, although poorly supported in some instances. The genus is inferred to have originated 36.43–26.23 Mya, possibly in eastern South America. Ancestral state reconstructions of continuous and discrete floral characters inferred a mixed morphology as the ancestral condition for the group. Phylogenetic signal differed between perianth and sexual whorls and gradual evolution was recovered for all traits except style length and anther length. Environmental variables showed no phylogenetic signal and a pattern of variation that was not correlated with branch length, suggesting that environmental transitions were concomitant with speciation. Dispersal is inferred to be the main driver of the differential distribution observed among species. In addition, climatic preferences and floral characters seem to have been important reproductive barriers in Dolichandra. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 403–420.  相似文献   

16.
17.
A phylogenetic analysis of the leafhopper genus Apogonalia was conducted based on a matrix of 40 terminal taxa and 147 morphological characters. The analysis yielded 1391 equally most‐parsimonious trees, which do not support the monophyly of Apogonalia in the strict consensus. A successive weighting procedure yielded 62 trees in which the genus appeared as a monophyletic group. The strict consensus of these 62 trees is almost entirely dichotomous, showing only two polytomies. The test of phylogenetic integrity was applied for distinct variations of three species: A. germana, A. sanguinipes, and A. histrio. Only for the first species was the conjecture that its variations belong to the same entity corroborated. The best‐supported clade within Apogonalia, which has several synapomorphies and high branch support indices, comprises nine Antillean endemic species. This distributional pattern probably was originated by vicariance in the Late Cretaceous, when the Proto‐Antillean archipelago was pushed north‐eastward by the Caribbean Plate to become the modern Greater Antilles. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 548–570.  相似文献   

18.
The genus Vanda and its affiliated taxa are a diverse group of horticulturally important species of orchids occurring mainly in South‐East Asia, for which generic limits are poorly defined. Here, we present a molecular study using sequence data from three plastid DNA regions. It is shown that Vanda s.l. forms a clade containing approximately 73 species, including the previously accepted genera Ascocentrum, Euanthe, Christensonia, Neofinetia and Trudelia, and the species Aerides flabellata. Resolution of the phylogenetic relationships of species in Vanda s.l. is relatively poor, but existing morphological classifications for Vanda are incongruent with the results produced. Some novel species relationships are revealed, and a new morphological sectional classification is proposed based on support for these groupings and corresponding morphological characters shared by taxa and their geographical distributions. The putative occurrence of multiple pollination syndromes in this group of taxa, combined with complex biogeographical history of the South‐East Asian region, is discussed in the context of these results. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 549–572.  相似文献   

19.
The taxonomy of the amphi‐Atlantic tree genus Carapa (Meliaceae) has long been controversial. Of the three species currently recognized in the genus, two are known to present substantial morphological variation that has been used in the past to distinguish several taxa, most of which are currently placed in synonymy. Here, a combination of field observations, univariate analyses of leaf, floral and seed characters and principal coordinate analyses of floral characters in the context of a molecular phylogenetic analysis was used to investigate the patterns of variation and delimit morphological species anew in the genus. These results support the recognition of 27 species in Carapa, of which 16 are previously described and 11 are new. In general, phylogenetically related species occurred in the same geographical area, but were morphologically distinct. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 186–221.  相似文献   

20.
Radiation of dramatically disparate forms among the phylum Mollusca remains a key question in metazoan evolution, and requires careful evaluation of homology of hard parts throughout the deep fossil record. Enigmatic early Cambrian taxa such as Halkieria and Wiwaxia (in the clade Halwaxiida) have been proposed to represent stem‐group aculiferan molluscs (Caudofoveata + Solenogastres + Polyplacophora), as complex scleritomes were considered to be unique to aculiferans among extant molluscs. The ‘scaly‐foot gastropod’ (Neomphalina: Peltospiridae) from hydrothermal vents of the Indian Ocean, however, also carries dermal sclerites and thus challenges this inferred homology. Despite superficial similarities to various mollusc sclerites, the scaly‐foot gastropod sclerites are secreted in layers covering outpockets of epithelium and are largely proteinaceous, while chiton (Polyplacophora: Chitonida) sclerites are secreted to fill an invaginated cuticular chamber and are largely calcareous. Marked differences in the underlying epithelium of the scaly‐foot gastropod sclerites and operculum suggest that the sclerites do not originate from multiplication of the operculum. This convergence in different classes highlights the ability of molluscs to adapt mineralized dermal structures, as supported by the extensive early fossil record of molluscs with scleritomes. Sclerites of halwaxiids are morphologically variable, undermining the assumed affinity of specific taxa with chitons, or the larger putative clade Aculifera. Comparisons with independently derived similar structures in living molluscs are essential for determining homology among fossils and their position with respect to the enigmatic evolution of molluscan shell forms in deep time. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 949–954.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号