共查询到20条相似文献,搜索用时 0 毫秒
1.
A strain of white rot fungus, Phanerochaete chrysosporium Burds. ME446, has been characterized with respect to the extent and rate of Betula nigrificans lignin and non-lignin conversion by solid-substrate fermentation for different culture conditions. Moisture content, inoculum density, nitrogen supplementation and autoclaving of birch solids significantly affected lignin conversion rates and yields in 20 day fermentations. Oxygen favoured lignin over non-lignin conversion at partial pressures of 1.0 atm. Oxygen pressures of 2.0 atm severely inhibited both lignin and non-lignin conversions. Carbon dioxide partial pressures of 0.25, 0.5 and 1.0 atm at oxygen pressures of 1.0 atm increasingly inhibited both lignin and non-lignin conversion rates and yields. The results of these studies demonstrate the effects of major process variables and suggest a need to control the gas environment for process optimization. 相似文献
2.
Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium 总被引:17,自引:0,他引:17
The manganese peroxidase (MnP), from the lignin-degrading fungus Phanerochaete chrysosporium, an H2O2-dependent heme enzyme, oxidizes a variety of organic compounds but only in the presence of Mn(II). The homogeneous enzyme rapidly oxidizes Mn(II) to Mn(III) with a pH optimum of 5.0; the latter was detected by the characteristic spectrum of its lactate complex. In the presence of H2O2 the enzyme oxidizes Mn(II) significantly faster than it oxidizes all other substrates. Addition of 1 M equivalent of H2O2 to the native enzyme in 20 mM Na-succinate, pH 4.5, yields MnP compound II, characterized by a Soret maximum at 416 nm. Subsequent addition of 1 M equivalent of Mn(II) to the compound II form of the enzyme results in its rapid reduction to the native Fe3+ species. Mn(III)-lactate oxidizes all of the compounds which are oxidized by the enzymatic system. The relative rates of oxidation of various substrates by the enzymatic and chemical systems are similar. In addition, when separated from the polymeric dye Poly B by a semipermeable membrane, the enzyme in the presence of Mn(II)-lactate and H2O2 oxidizes the substrate. All of these results indicate that the enzyme oxidizes Mn(II) to Mn(III) and that the Mn(III) complexed to lactate or other alpha-hydroxy acids acts as an obligatory oxidation intermediate in the oxidation of various dyes and lignin model compounds. In the absence of exogenous H2O2, the Mn-peroxidase oxidized NADH to NAD+, generating H2O2 in the process. The H2O2 generated by the oxidation of NADH could be utilized by the enzyme to oxidize a variety of other substrates. 相似文献
3.
Lee JW Lee SM Hong EJ Jeung EB Kang HY Kim MK Choi IG 《Journal of microbiology (Seoul, Korea)》2006,44(2):177-184
The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99% during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle. 相似文献
4.
Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium 总被引:32,自引:0,他引:32
A Mn(II)-dependent peroxidase found in the extracellular medium of ligninolytic cultures of the white rot fungus, Phanerochaete chrysosporium, was purified by DEAE-Sepharose ion-exchange chromatography, Blue Agarose chromatography, and gel filtration on Sephadex G-100. Sodium dodecyl sulfate-gel electrophoresis indicated that the homogeneous protein has an Mr of 46,000. The absorption spectrum of the enzyme indicates the presence of a heme prosthetic group. The pyridine hemochrome absorption spectrum indicates that the enzyme contained one molecule of heme as iron protoporphyrin IX. The absorption maximum of the native enzyme (406 nm) shifted to 433 nm in the reduced enzyme and to 423 nm in the reduced-CO complex. Both CN- and N-3 readily bind to the native enzyme, indicating an available coordination site and that the heme iron is high spin. The absorption spectrum of the H2O2 enzyme complex, maximum at 420 nm, is similar to that of horseradish peroxidase compound II. P. chrysosporium peroxidase activity is dependent on Mn(II), with maximal activity attained above 100 microM. The enzyme is also stimulated to varying degrees by alpha-hydroxy acids (e.g., malic, lactic) and protein (e.g., gelatin, albumin). The peroxidase is capable of oxidizing NADH and a wide variety of dyes, including Poly B-411 and Poly R-481. Several of the substrates (indigo trisulfonate, NADH, Poly B-411, variamine blue RT salt, and Poly R-481) are oxidized by this Mn(II)-dependent peroxidase at considerably faster rates than those catalyzed by horseradish peroxidase. The enzyme rapidly oxidizes Mn(II) to Mn(III); the latter was detected by the characteristic absorption spectrum of its pyrophosphate complex. Inhibition of the oxidation of the substrate diammonium 2,2-azino-bis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) by Na-pyrophosphate suggests that Mn(III) plays a role in the enzyme mechanism. 相似文献
5.
High initial Mn(II) concentration results in accumulation of a Mn(III) tartrate complex in the growth medium of Phanerochaete chrysosporium. Since Mn(III) is the major oxidant in ligninolysis by manganese peroxidase, the role of accumulated complex should not be neglected when degradation experiments by a crude culture filtrate are performed. To study the Mn(III) complex oxidative potential it was isolated by absorption to polyamide followed by desorption with an alkaline methanol solution. High performance liquid chromatography analysis and atomic absorption spectroscopy confirmed that the isolate was Mn(III) tartrate. Oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfonate) was used for testing the temperature and pH stability of the isolate that also intensively oxidized 2,6-dimethoxyphenol. In comparison with the non-isolated complex in the culture filtrate, the isolate showed increased temperature and pH stability. The oxidative potential of the isolated Mn(III) tartrate was additionally tested by decolorization of the synthetic dye Indigo carmine. 相似文献
6.
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT. 相似文献
7.
Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. 总被引:2,自引:8,他引:2 下载免费PDF全文
Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 +/- 3.6% of the [14C]TNT was degraded to 14CO2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [14C]TNT adsorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [14C]TNT to 14CO2 such that 6.3 +/- 0.6% of the [14C]TNT initially present was converted to 14CO2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [14C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less than 5% of the radioactivity remained as undegraded [14C]TNT following incubation with the fungus in soil or liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 +/- 2.9% and 19.6 +/- 3.5% of the initial TNT was converted to 14CO2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT. 相似文献
8.
Biosorption of cadmium(II), lead (II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium 总被引:4,自引:0,他引:4
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model. 相似文献
9.
Abstract 3 New spectrophotometric enzyme assays were developed for the study of microbial lignin-degrading enzymes. The conversion of 2-methoxy-3-phenylbenzoic acid to 2-hydroxy-3-phenylbenzoic acid led to the discovery of an extracellular, aromatic methyl ether demethylase produced by the white-rot fungus Phanerochaete chrysosporium . The conversion of methyl 2-hydroxy-3-phenylbenzoate to 2-hydroxy-3-phenylbenzoic acid allowed the identification of an extracellular, aromatic methyl ester esterase produced by this fungus. The Phanerochaete sp. also excreted an enzyme complex that oxidized 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, probably to aliphatic products. All 3 novel enzyme activities were produced together with, and probably comprise a part of, the Phanerochaete ligninolytic enzyme complex. Unlike previously known ligninases, these enzymes did not oxidize 3,4-dimethoxybenzyl alcohol. All 3 were H2 O2 -dependent and were activated by Mn2+ ions. 相似文献
10.
白腐菌产锰过氧化物酶培养基的优化 总被引:12,自引:0,他引:12
黄孢原毛平革菌(Phanerochaete Chrysosporium)5.776在初始发酵培养基中产胞外锰过氧化物酶活力极低。为了显著提高锰过氧化物酶活力,对初始发酵培养基进行优化。通过调整培养基中碳源、氮源种类和含量,吐温80添加量,Mn^2 终浓度,静置培养温度、时间,采用分光光度计法测定酶活力,发现黄孢原毛平革菌在限氮高锰培养基中产生较高的锰过氧化物酶。静置液体培养的优化条件是:葡萄糖10g/L;酒石酸铵2mmol/L;吐温80 lg/L;Mn^2 9.9μg/L;于34℃静置培养5d;产MnP活力达1200U/L,比优化前提高了近17倍。 相似文献
11.
《Enzyme and microbial technology》1986,8(4):209-212
Phanerochaete chrysosporium oxidized benzo(a)pyrene rapidly to CO2and several organic soluble and water soluble compounds in agitated pellet cultures during secondary metabolism. In 54 h the added benzo(a)pyrene was almost completely (99.5%) converted to metabolic products. After 10 days incubation in the presence of excess glucose 19% of the radiolabel was recovered as14CO2. Maximal degradation rates calculated on the basis of evolved14CO2were 15 nmol (3.7 μg) in a day by a 50 ml culture with 2 mg ml−1dry weight fungal pellets. Extracellular ligninases were shown to be involved in the initial oxidation reactions. When ligninase preparation was added to the cultures simultaneously with benzo(a)pyrene, immediate accumulation of organic soluble and water soluble products occurred followed by evolution of CO2. Without ligninase addition a lag period of 10–12 h was observed before meaningful CO2. evolution started. When benzo(a)pyrene was incubated with ligninase and an H2O2generating system, three main organic soluble oxidation products were formed. 相似文献
12.
Improvements of Western blotting to detect monoclonal antibodies 总被引:4,自引:0,他引:4
M Bestagno A Cerino S Riva G C Astaldi Ricotti 《Biochemical and biophysical research communications》1987,146(3):1509-1514
A comparison of the effects of different factors on the sensitivity of Western blotting technique to detect monoclonal antibodies is described. The major improvements were obtained by: A) renaturating the antigen in the gel before transferring it in carbonate buffer at pH 10 onto nitrocellulose and B) using alkaline-phosphatase-conjugated second antibody instead of peroxidase-conjugated second antibody. 相似文献
13.
14.
Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay 总被引:2,自引:0,他引:2
The specific enzymes associated with lignin degradation in solid lignocellulosic substrates have not been identified. Therefore, we examined extracts of cultures of Phanerochaete chrysosporium that were degrading a mechanical pulp of aspen wood. Western blot (immunoblot) analyses of the partially purified protein revealed lignin peroxidase, manganese-dependent peroxidase (MnP), and glyoxal oxidase. The dominant peroxidase, an isoenzyme of MnP (pI 4.9), was isolated, and its N-terminal amino acid sequence and amino acid composition were determined. The results reveal both similarities to and differences from the deduced amino acid sequences from cDNA clones of dominant MnP isoenzymes from liquid cultures. Our results suggest, therefore, that the ligninolytic-enzyme-encoding genes that are expressed during solid substrate degradation differ from those expressed in liquid culture or are allelic variants of their liquid culture counterparts. In addition to lignin peroxidase, MnP, and glyoxal oxidase, xylanase and protease activities were present in the extracts of the degrading pulp. 相似文献
15.
Site-directed mutagenesis was performed on Mn peroxidase (MnP) from the white-rot fungus Phanerochaete chrysosporium to investigate the role of the axial ligand hydrogen-bonding network on heme reactivity. D242 is hydrogen bonded to the proximal His of MnP; in other peroxidases, this conserved Asp, in turn, is hydrogen bonded to a Trp. In MnP and other fungal peroxidases, the Trp is replaced by a Phe (F190). Both residues are thought to have a direct influence on the electronic environment of the catalytic center. To study only the active mutants at D242 and F190, we used degenerate oligonucleotides allowing us to screen all 19 possible amino acid mutants at these positions. Two mutants at D242 passed our screen, D242E and D242S. Both mutations impaired only the functioning of compound II. The reactions of the ferric enzyme with H(2)O(2) were unaffected by the mutations, as were the reactions of compound I with reducing substrates. The D242S and D242E mutations reduced the first-order rate constant for the reaction of MnP compound II with chelated Mn(2+) from 233 s(-1) (wild type) to 154 s(-1) and 107 s(-1), respectively. Three F190 mutants passed our screen, F190V, F190L, and F190W. Similar to mutants at D242, these mutants largely affected the function of compound II. The F190V mutation increased the first-order rate constant for the reduction of compound II by chelated Mn(2+) to 320 s(-1). The F190L mutation decreased this rate to 137 s(-1). The F190W mutant was not very stable, but at pH 6.0, this mutation decreased the rate of compound II reduction by Mn(2+) from 140 s(-1) in the wild type to 36 s(-1). There was no indication that the F190W mutant was capable of forming a protein-centered Trp cation radical. All the mutations altered the midpoint potential of the Fe(3+)/Fe(2+) couple of the enzyme, as calculated from cyclic voltammagrams of the proteins. The values were shifted from -96 mV in the wild-type enzyme to -123 mV in D242S, -162 mV in D242E, -82 mV in F190L, -173 mV in F190V, and -51 mV in F190W. Collectively, these results demonstrate that D242 and F190 in MnP influence the electronic environment around the heme and that the reactions of compound II are far more sensitive to this influence than the reduction of compound I. 相似文献
16.
17.
During investigation of biodegradation in soil, we have found that classical or standard techniques for introduction of compounds and the growth of fungus into soil are ill-defined and inadequate. In response to this deficiency, a method for controlled introduction of extractable compounds and for the growth of fungus in soils has been developed. This method was successfully used to study the degradation of fluorene in soil by the fungus Phanerochaete chrysosporium. 相似文献
18.
Three phenolic model compounds representing bonding patterns of residual kraft lignin were incubated with manganese peroxidase from Lentinula edodes. Extensive degradation of all the phenolic models, mainly occurring via side-chain benzylic oxidation, was observed. Among the tested model compounds the diphenylmethane alpha-5 phenolic model was found to be the most reactive, yielding several products showing oxidation and fragmentation at the bridging position. The non-phenolic 5-5' biphenyl and 5-5' diphenylmethane models were found unreactive. 相似文献
19.
The -amino group of the carbohydrate-binding module (CBM) from Phanerochaete chrysosporium cellulase Cel7D was covalently labelled with fluorescein isothiocyanate. The fluorescein-labelled CBM was characterised regarding substrate binding, showing specificity only to cellulose and not to mannan and xylan. Conjugation of fluorescein isothiocyanate to CBM did not affect its binding to cellulose. The labelled CBM was successfully used as a probe for detecting cellulose in lignocellulose material such as never dried spruce and birch wood as well as pulp fibres. 相似文献
20.
Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. 总被引:1,自引:9,他引:1 下载免费PDF全文
The specific enzymes associated with lignin degradation in solid lignocellulosic substrates have not been identified. Therefore, we examined extracts of cultures of Phanerochaete chrysosporium that were degrading a mechanical pulp of aspen wood. Western blot (immunoblot) analyses of the partially purified protein revealed lignin peroxidase, manganese-dependent peroxidase (MnP), and glyoxal oxidase. The dominant peroxidase, an isoenzyme of MnP (pI 4.9), was isolated, and its N-terminal amino acid sequence and amino acid composition were determined. The results reveal both similarities to and differences from the deduced amino acid sequences from cDNA clones of dominant MnP isoenzymes from liquid cultures. Our results suggest, therefore, that the ligninolytic-enzyme-encoding genes that are expressed during solid substrate degradation differ from those expressed in liquid culture or are allelic variants of their liquid culture counterparts. In addition to lignin peroxidase, MnP, and glyoxal oxidase, xylanase and protease activities were present in the extracts of the degrading pulp. 相似文献