首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Kuhnian framework is used to analyze the current controversy over whether two or three fundamental types of life forms exist. Until the 1980s, all life was classified into two primary forms: eukaryotes and prokaryotes. Using molecular sequencing data, Carl Woese suggested the archaebacteria constituted a third domain. In the mid-1990s, Radhey S. Gupta challenged the three-domain hypothesis. While this dispute may seem to be a purely technical debate over the analysis of protein and nucleic acid sequence data, the controversy encompasses broader issues such as the aims of classification and the role of microorganisms in the biosphere. At the heart of this dispute is what kinds of data are relevant to constructing an overall taxonomy. The prestige of molecular biology played a large role in why the three-domain hypothesis was accepted so readily, but supporters of the two-domain hypothesis argue that the fossil record, morphology, and cell physiology should all play a role in taxonomy. This case study provides a good example of a paradigm shift in the making, demonstrating that issues beyond the raw data will be significant factors in deciding whether the three-domain hypothesis will prevail or a new classificatory scheme will emerge.  相似文献   

2.
The evolutionary relationship within prokaryotes is examined based on signature sequences (defined as conserved inserts or deletions shared by specific taxa) and phylogenies derived from different proteins. Archaebacteria are indicated as being monophyletic by a number of proteins related to the information transfer processes. In contrast, for several other highly conserved proteins, common signature sequences are present in archaebacteria and Gram-positive bacteria, whereas Gram-negative bacteria are indicated as being distinct. For these proteins, archaebacteria do not form a phylogenetically distinct clade but show polyphyletic branching within Gram-positive bacteria. A closer relationship of archaebacteria to Gram-positive bacteria in comparison with Gram-negative bacteria is generally seen for the majority of the available gene/protein sequences. To account for these results and the fact that both archaebacteria and Gram-positive bacteria are prokaryotes surrounded by a single cell membrane, I propose that the primary division within prokaryotes is between monoderm prokaryotes (surrounded by a single membrane) and diderm prokaryotes (i.e. all true Gram-negative bacteria containing both an inner cytoplasmic membrane and an outer membrane). This proposal is consistent with both cell morphology and signature sequences in different proteins. The monophyletic nature of archaebacteria for some genes, and their polyphyletic branching within Gram-positive bacteria as suggested by others, is critically examined, and several explanations, including derivation of archaebacteria from Gram-positive bacteria in response to antibiotic selection pressure, are proposed. Signature sequences in proteins also indicate that the low-G + C Gram-positive bacteria are phylogenetically distinct from the high-G + C Gram-positive group and that the diderm prokaryotes (i.e. Gram-negative bacteria) appear to have evolved from the latter group. Protein phylogenies and signature sequences also show that all eukaryotic cells have received significant gene contributions from both an archaebacterium and a Gram-negative eubacterium. Thus, the hypothesis that archaebacteria and eukaryotes shared a common ancestor exclusive of eubacteria is not supported. These observations provide evidence for an alternate view of the evolutionary relationship among living organisms that is different from the currently popular three-domain proposal.  相似文献   

3.
In the process of phylogenetic studies, based on the comparative analysis of sequences of 16S (18S) rRNA, C. Woese and collaborators discovered that some microorganisms, which previously had been described as bacteria, form a group named archaebacteria, differing from other bacteria as well as from eukaryotes to the same extent as the latter differ from each other. A review of the work leading to that result, as well as characteristics of archaebacteria with emphasis on their biochemistry and molecular biology, is presented.  相似文献   

4.
Pancsa R  Tompa P 《PloS one》2012,7(4):e34687
Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.  相似文献   

5.
单细胞生物进化研究的进步   总被引:7,自引:2,他引:5  
胡楷  吴庆书 《遗传》2002,24(1):104-110
20世纪60年代,生物大致分为5界的谱系图, 经历了几次翻新,开始提出了线粒体和叶绿体的内共生学说。 由于分子生物学的发展,首先将各种生物的蛋白质的分子进行比较,构建成蛋白质的分子系统树。再转向核糖核酸,将核糖体的小亚单位,作为区别生命类型之间亲缘关系的指标。发现有些嗜极端条件的细菌,它们不同于原核生物也不同于真核生物,是第三种类型的生命形式。因此,在 80年代为生命建立了细菌、古细菌和真核生物三界的系统树。对许许多多单个基因的系统树的分析,又使人们认识到,古细菌与细菌和真核微生物之间以及各个物种之间,显然皆发生过大量的基因交换。对单细胞进化来说,基因除垂直传递外,横向的或叫侧向的基因转移也十分繁多。在一张完全的系统图中,要同时表现几千个不同的基因家族的超联结的种系型式才符合实际。因而,最新版本的系统树是分枝交缠、无主干的。 Abstract:In 1960s,kimgdoms of organisms were charted generally in a five branching form.Later,the endosymbiont hypothesis for the mitochondria and the chloroplast was proposed.The life-form is divided into two forms,the prokaryotes (bacteria) and the eukaryotes.The study of the molecular biology made the progress faster.In 1980s,Woese,CR.asserted that two-domain view of life was no longer true,a three-domain construct,the Bacteria,the Archaea,and the Eukaryotes had to take its place.At first,phylogeny trees based on differences in the amino acid sequences,then among ribosomal RNAs and also nuclear gene from hundreds of microbial species were depicted and many mini phylogenetic trees grouped the species according to their differences in the sequences.It was found that they shared genes between their contemporaries and across the species barriers.At the root of the phylogeny tree,there was not a single common cell,it was replaced by a common ancestral community of primitive cells.Genes transfered rather freely as the transposons swapping between those cells.There was no last universal common ancestor of single cell that could be found in the revised Tree of Life,It was not easy to represent the genealogical patterns of thousands of different families of genes,in one systematic map,therefor there was no trunk at all.  相似文献   

6.
The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.  相似文献   

7.
Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences   总被引:18,自引:0,他引:18  
A phylogenetic tree of most of the major groups of organisms has been constructed from the 352 5S ribosomal RNA sequences now available. The tree suggests that there are several major groups of eubacteria that diverged during the early stages of their evolution. Metabacteria (= archaebacteria) and eukaryotes separated after the emergence of eubacteria. Among eukaryotes, red algae emerged first; and, later, thraustochytrids (a Proctista group), ascomycetes (yeast), green plants (green algae and land plants), "yellow algae" (brown algae, diatoms, and chrysophyte algae), basidiomycetes (mushrooms and rusts), slime- and water molds, various protozoans, and animals emerged, approximately in that order. Three major types of photosynthetic eukaryotes--i.e., red algae (= Chlorophyll a group), green plants (Chl. a + b group) and yellow algae (Chl. a + c)--are remotely related to one another. Other photosynthetic unicellular protozoans--such as Cyanophora (Chl. a), Euglenophyta (Chl. a + b), Cryptophyta (Chl. a + c), and Dinophyta (Chl. a + c)--seem to have separated shortly after the emergence of the yellow algae.   相似文献   

8.
9.
More than 30 organisms have been sequenced entirely. Here, we applied a variety of simple bioinformatics tools to analyze 29 proteomes for representatives from all three kingdoms: eukaryotes, prokaryotes, and archaebacteria. We confirmed that eukaryotes have relatively more long proteins than prokaryotes and archaes, and that the overall amino acid composition is similar among the three. We predicted that approximately 15%-30% of all proteins contained transmembrane helices. We could not find a correlation between the content of membrane proteins and the complexity of the organism. In particular, we did not find significantly higher percentages of helical membrane proteins in eukaryotes than in prokaryotes or archae. However, we found more proteins with seven transmembrane helices in eukaryotes and more with six and 12 transmembrane helices in prokaryotes. We found twice as many coiled-coil proteins in eukaryotes (10%) as in prokaryotes and archaes (4%-5%), and we predicted approximately 15%-25% of all proteins to be secreted by most eukaryotes and prokaryotes. Every tenth protein had no known homolog in current databases, and 30%-40% of the proteins fell into structural families with >100 members. A classification by cellular function verified that eukaryotes have a higher proportion of proteins for communication with the environment. Finally, we found at least one homolog of experimentally known structure for approximately 20%-45% of all proteins; the regions with structural homology covered 20%-30% of all residues. These numbers may or may not suggest that there are 1200-2600 folds in the universe of protein structures. All predictions are available at http://cubic.bioc.columbia.edu/genomes.  相似文献   

10.
Early evolution and the origin of eukaryotes   总被引:35,自引:0,他引:35  
Our understanding of evolutionary relationships in the eukaryotic world has been revolutionized by molecular systematics. Phylogenies based upon comparisons of rRNAs define five major eukaryotic assemblages plus a series of paraphyletic protist lineages. Comparison of conserved genes that were duplicated prior to the divergence of eubacteria, archaebacteria, and eukaryotes, positions the root of the universal tree within the eubacterial line of descent. In this review a novel model is presented which uses the rRNA and protein based phylogenies to describe the evolutionary origins of eukaryotes.  相似文献   

11.
Glutathione transferases (GSTs) represent a widespread enzyme superfamily in eukaryotes and prokaryotes catalyzing different reactions with endogenous and xenobiotic substrates such as organic pollutants. The latter are often found together with metal contamination in the environment. Besides performing of essential functions, GSTs protect cells by conjugation of glutathione with various reactive electrophiles. The interference of toxic metals with this functionality of GSTs may have unpredictable toxicological consequences for the organisms. In this review results from the recent literature are summarized and discussed describing the ability of metals to inhibit intracellular detoxification processes in animals and plants.  相似文献   

12.
13.
Since times of Aristotle animals were considered as a group, opposing to plants. The last were distinguished by two characters. Plants as distinct from animals live the attached way of a life and all nutrients receive from a substratum on which live and from the surrounding air. Animals live an active way of life and exist due to digestion. Fungi at such definition belong to plants. Only in second half of XX centuries due to works of Whittaker and of Tachtadjan fungi have received the separate status equally with plants and animals. In this new system of a plant embraced either oxygenic phototrophs, or photosynthetic eukaryotes. The traditional characters distinguishing animals from plants and fungi are in detail analysed. Many of them appeared formal, not reflecting the structure of relationship. Comparing heterotrophs some authors saw in absorptive nutrition the main difference of fungi from animals. However on mechanisms of receipt of substances in a cell fungi, animals and plants do not differ. Phagocytosis and pinocytosis (clathrin-mediated endocytosis), considered as the most characteristic feature of animals, are revealed both in fungi, and in plants. On photosynthetic activity plants form heterogeneous group, differing on primary and secondary plastids. The last besides have the various origin connected to symbiogenesis of the host cell with red or green algae. Heterotrophy cannot be considered as a uniting attribute of fungi and animals. It is essentially different and focused on diverse food sources. Evolution of animals is connected to perfection of structure of a plasmatic membrane and saturation by its molecules allowing a cell, and through it all organism to be guided in an environment and adequally to be up to external irritants. At a cellular level animals use the various mechanisms of cellular activity connected to moving of cells, their combination in aggregates and complexes or, on the contrary, separation in new cellular configurations. The complex of cellular adaptations connected to the analysis of external signals and adequate response to them of cells, underlies the phenomenon of irritability. At a cellular level irritability is mediated through work of the actin apparatus. Lamarck in "Philosophie zoologique" considered irritability as the main distinctive feature of animals. Evolution of plants and fungi went in a direction of development of a secondary metabolism. The secondary metabolism, concerning synthesis of protective substances, is peculiar to all sedentary organisms, including the animals.  相似文献   

14.
The evolutionary origin of eukaryotic transmembrane signal transduction   总被引:1,自引:0,他引:1  
1. A comparison was made of transmembrane signal transduction mechanisms in different eukaryotes and prokaryotes. 2. Much attention was given to eukaryotic microbes and their signal transduction mechanisms, since these organisms are intermediate in complexity between animals, plants and bacteria. 3. Signal transduction mechanisms in eukaryotic microbes, however, do not appear to be intermediate between those in animals, plants and bacteria, but show features characteristic of the higher eukaryotes. 4. These similarities include the regulation of receptor function, adenylate cyclase activity, the presence of a phosphatidylinositol cycle and of GTP-binding regulatory proteins. 5. It is proposed that the signal transduction systems known to operate in present-day eukaryotes evolved in the earliest eukaryotic cells.  相似文献   

15.
The hypothesis of bacterial origin of mitochondria, which existed until the end of the 20th century, has been confirmed on the basis of the current concepts of organic world evolution in the open sea hydrosphere and original data on the entry of bacteria (prokaryotes) in the cells of eukaryotes and their transformation into the mitochondrial mechanism of aerobic energy metabolism. This hypothesis can now be considered as a factually substantiated theory. The process of endocytosis of bacteria in the tissues of eukaryotes, which began at the onset of transition of the anaerobic state of open sea hydrosphere and land atmosphere (Early Proterozoic), is considered as the beginning of symbiotic mode of life of organisms of the Proterozoic and Postproterozoic organic world.  相似文献   

16.
FtsZ ring: the eubacterial division apparatus conserved in archaebacteria   总被引:12,自引:2,他引:10  
FtsZ is a tubulin-like protein that is essential for cell division in eubacteria. It functions by forming a ring at the division site that directs septation. The archaebacteria constitute a kingdom of life separate from eubacteria and eukaryotes. Like eubacteria, archaebacteria are prokaryotes, although they are phylogenetically closer to eukaryotes. Here it is shown that archaebacteria also possess FtsZ and that it is biochemically similar to eubacterial FtsZs. Significantly, FtsZ from the archaebacterium Haloferax volcanii is a GTPase that is localized to a ring that coincides with the division constriction. These results indicate that the FtsZ ring was part of the division apparatus of a common prokaryotic ancestor that was retained by both eubacteria and archaebacteria.  相似文献   

17.
A review of history of genosystematics (macromolecular systematics) from E. Chargaff and A. N. Belozersky up to date. The role of A.N. Belozersky and his collaborators in the development of this new branch of systematics is analyzed. Genosystematics was the source of valuable information clarifying some aspects of biological evolution. Its methods were successfully employed in microorganisms--(e.g., discovery of archaebacteria) and in eucaryote systematics (origin of plastids, falcification of "molecular clock" hypothesis, substantial changes in higher plants phylogenetics, etc.). However, attempts to employ some fragmentary and unreliable data obtained by genosystematics for modifying the existing phylogenetic schemes and systems of organisms failed. Nowadays genosystematics is like a newborn child suffering from children's diseases well-known to "classical" systematics. It is rather far from final conclusions describing the evolution of genotypes. Some of its recent achievments, e.g., elaboration of the concept of PhyloCode, allow to believe that this science is able to suggest revolutionary changes in Linnean systematics.  相似文献   

18.
H Hori  S Osawa 《Bio Systems》1986,19(3):163-172
The secondary structure models of 5S rRNA have been constructed from the primary structure of 352 5S rRNA species available at present. All the 5S rRNAs examined can take essentially the same secondary structure, however they reveal characteristic differences between eukaryotes, metabacteria (= archaebacteria) and eubacteria. These three types of models can be further subgrouped by minor but characteristic differences. A phylogenic tree of organisms has been constructed using these 5S rRNA sequences by the weighted pairing method (WPG method). The tree reveals that there exist several major groups of eubacteria which seem to have diverged into different directions in the early stages of bacterial evolution. After emergence of eubacteria, metabacteria and eukaryotes separated from each other from their common ancestor. In the eukaryotic evolution, red algae (Rhodophyta) emerged first, and thereafter, thraustocytrids-Proctista, Ascomycota, green plants (green algae and land plants), Basidiomycota, Chromophyta (brown algae, diatoms and golden-yellow algae), slime- and water molds, various protozoans, and animals emerged in this order.  相似文献   

19.
1.  Metabolic rate is conventionally assumed to scale with body mass to the 3/4-power, independently of the metabolic level of the organisms being considered. However, recent analyses in a variety of animals and plants indicate that the power (log–log slope) of this relationship varies significantly with metabolic level, ranging from c . 2/3 to 1.
2.  Here I show that the scaling slopes of rates of respiration and growth are related to the metabolic level of a variety of unicellular organisms, as similarly occurs for respiration rates in multicellular organisms.
3.  The recently proposed 'metabolic-level boundaries hypothesis' provides insight into these effects of metabolic level. As predicted, the scaling slopes for resting (endogenous) respiration rate in prokaryotes, algae and protozoans are negatively related to metabolic level; and in protozoans, the scaling slope increases with starvation. Also as predicted, the scaling slopes of growth rate in algae and protozoans are negatively related to growth level. Unexpectedly, opposite effects of starvation on the metabolic scaling slopes of unicellular prokaryotes (compared to that of eukaryotes) may be a spurious result of respiration measurements that did not adequately consider the effects of rapid cell multiplication in prokaryotes with extremely short generation times.
4.  Analyses of both unicellular and multicellular organisms show that there is no universal metabolic scaling relationship, and that variation in metabolic scaling relationships is systematically and possibly universally related to metabolic level.  相似文献   

20.
"Two-component" phosphorelay signal transduction systems constitute a potential target for antibacterial and antifungal agents, since they are found exclusively in prokaryotes and lower eukaryotes (yeast, fungi, slime mold, and plants) but not in mammalian organisms. Saccharomyces cerevisiae Ypd1p, a key intermediate in the osmosensing multistep phosphorelay signal transduction, catalyzes the phosphoryl group transfer between response regulators. Its 1.8 A structure, representing the first example of a eukaryotic phosphorelay protein, contains a four-helix bundle as in the HPt domain of Escherichia coli ArcB sensor kinase. However, Ypd1p has a 44-residue insertion between the last two helices of the helix bundle. The side-chain of His64, the site of phosphorylation, protrudes into the solvent. The structural resemblance between Ypd1p and ArcB HPt domain suggests that both prokaryotes and lower eukaryotes utilize the same basic protein fold for phosphorelay signal transduction. This study sheds light on the best characterized eukaryotic phosphorelay system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号