首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.  相似文献   

2.
Exocytic events are tightly regulated cellular processes in which rab GTPases and their interacting proteins perform an important function. We set out to identify new binding partners of rab3, which mediates regulated secretion events in specialized cells. We discovered Zwint-1 as a rab3 specific binding protein that bound preferentially to rab3c. The interaction depends on a critical residue in rab3c that determines the binding efficiency of Zwint-1, which is immaterial for interaction with rabphilin3a. Rab3c and Zwint-1 are expressed highly in brain and colocalized extensively in primary hippocampal neurons. We also found that SNAP25 bound to the same region in Zwint-1 as rab3c, suggesting a new role for the kinetochore protein Zwint-1 in presynaptic events that are regulated by rab3 and SNAP25.  相似文献   

3.
Gurmarin (Gur) is a peptide that selectively inhibits responses of the chorda tympani (CT) nerve to sweet compounds in rodents. In mice, the sweet-suppressing effect of Gur differs among strains. The inhibitory effect of Gur is clearly observed in C57BL/6 mice, but only slightly, if at all, in BALB/c mice. These two mouse strains possess different alleles of the sweet receptor gene, Sac (Tas1r3) (taster genotype for C57BL/6 and non-taster genotype for BALB/c mice), suggesting that polymorphisms in the gene may account for differential sensitivity to Gur. To investigate this possibility, we examined the effect of Gur in another Tas1r3 non-taster strain, 129 X 1/Sv mice. The results indicated that unlike non-taster BALB/c mice but similar to taster C57BL/6 mice, 129 X 1/Sv mice exhibited significant inhibition of CT responses to various sweet compounds by Gur. This suggests that the mouse strain difference in the Gur inhibition of sweet responses of the CT nerve may not be associated with polymorphisms of Tas1r3.  相似文献   

4.
5.
6.
Abstract: We had previously demonstrated that Rab3a-GTP inhibits and the Rab3a-binding protein Rabphilin3a enhances secretion in bovine chromaffin cells. In this study, we investigated the role of Rab3a-GTP binding in the intracellular expression and the function of Rabphilin3a in regulated exocytosis in bovine chromaffin cells. Using transient transfections, we found that a minimal domain, Rp(51–190), that inhibits secretion coincides with a minimal domain that effectively binds Rab3a-GTP and allows intracellular stability of the construct. This domain includes a cysteine-rich, Zn2+-binding domain whose integrity is also required for Rab3a-GTP binding and the ability to inhibit secretion. A Rabphilin3a mutant, containing both C2 domains but defective in Rab3a-GTP, and wild-type Rabphilin3a both localized to chromaffin granules and stimulated secretion similarly despite lessened intracellular expression of the mutant protein. The data are consistent with a sequence of events in which a Rab3a-GTP · Rabphilin3a complex forms on the secretory granule as a precursor in a pathway that enhances secretion. The complex dissociates (perhaps because of GTP hydrolysis) to permit the enhancement of secretion by Rabphilin3a.  相似文献   

7.
The major underlying cause of CHD is atherosclerosis, and oxidised LDL is known to play an important role in its development. We examined the role of three single nucleotide polymorphisms (SNPs) in the 15-lipoxygenase gene (ALOX15), in atherosclerosis. We genotyped three SNPs in the ALOX15 promoter in two Western Australian samples—1,111 community-based individuals and 556 with CHD. SNPs and haplotypes were tested for an association with carotid plaque, intima-media thickness and risk of CHD. The −611GG genotype was associated with increased likelihood of carotid plaque in CHD patients (OR = 4.01, 95%CI = 1.39–11.53, P = 0.005) and the C alleles of the G-220C and G-189C SNPs were associated with decreased likelihood of plaque among cases (OR = 0.66, 95%CI = 0.43–0.99, P = 0.05 and OR = 0.51, 95%CI = 0.34–0.78, P = 0.002 respectively). The GGG haplotype was associated with increased risk of carotid plaque in CHD patients (OR = 5.77, 95%CI = 1.82–18.29, P = 0.0007) and in community-based individuals under 53 years (OR = 4.15, 95%CI = 1.23–14.08, P = 0.02). No association was observed between ALOX15 SNPs or haplotypes and intima-media thickness. This study is novel as it is the first to examine the association between 15-lipoxygenase polymorphisms and atherosclerotic indicators. These findings suggest a possible role of ALOX15 polymorphisms in focal plaque formation.  相似文献   

8.
9.
In animal models, STAT3 action in the hypothalamus and liver appears essential for normal body weight and glucose homeostasis in response to insulin. We hypothesized that variation in the STAT3 gene may be associated with body fat and/or insulin resistance in the general population. Five tagging SNPs spanning the STAT3 gene, rs8074524, rs2293152, rs2306580, rs6503695, and rs7211777 were genotyped in 2776 white female twins (mean age, 47.4+/-12.5 yrs) from the St Thomas' United Kingdom Adult Twin Registry (Twins UK). Minor allele frequencies were as follows: rs8074524 (0.19), rs2293152 (0.37), rs2306580 (0.06), rs6503695 (0.35), and rs7211777 (0.34). The minor allele of rs2293152 was associated with higher homeostasis model assessment index of insulin resistance (p=0.013) in the full cohort and confirmed in sib-transmission/disequilibrium test (TDT): (p=0.015; n=60). However, there were no associations with fasting serum insulin or glucose or with obesity variables. Although defective STAT3 action results in obesity and insulin resistance in animal models, we failed to establish any indicative associations with common SNPs in this human study.  相似文献   

10.
Chitinase 3-like 1 (CHI3L1 or YKL40) is a secreted glycoprotein highly expressed in advanced stages of several cancer types, including prostate cancer (PCa). Impacts of genetic variants of CHI3L1 on PCa development have not yet been investigated. The most common well-studied genetic variations are single-nucleotide polymorphisms (SNPs). Therefore, the objective of this study was to explore associations of CHI3L1 SNPs with both the susceptibility to PCa and its clinicopathological development. Three promoter SNPs, rs6691378 (−1371, G>A), rs10399805 (−247, G>A) and rs4950928 (−131, C>G), and one non-synonymous SNP, rs880633 (+2950, T>C), were analysed using a TaqMan allelic discrimination assay for genotyping in a cohort of 701 PCa patients and 701 healthy controls. Results indicated that there were no significant associations of PCa susceptibility with these four CHI3L1 SNPs. However, among elderly PCa patients (aged >65 years), it was observed that polymorphic variants (GA + AA) of CHI3L1 rs6691378 and 10399805 were significantly linked to reduced risks of several clinicopathological characteristics, including a high Gleason grade, advanced pathologic T stage and tumour cell invasion. Moreover, analyses of The Cancer Genome Atlas database revealed that CHI3L1 expression levels were elevated in PCa tissues compared with normal tissues. Interestingly, higher CHI3L1 expression levels were found to be associated with longer progression-free survival rates in PCa patients. Our findings indicated that levels of CHI3L1 may influence the progression of PCa, and the rs6691378 and 10399805 SNP genetic variants of CHI3L1 are linked to the clinicopathological development of PCa within a Taiwanese population.  相似文献   

11.
Silencing of genes by hypermethylation contributes to cancer progression and has been shown to occur with increased frequency at specific genomic loci. However, the precise mechanisms underlying the establishment and maintenance of aberrant methylation marks are still elusive. The de novo DNA methyltransferase 3B (DNMT3B) has been suggested to play an important role in the generation of cancer-specific methylation patterns. Previous studies have shown that a reduction of DNMT3B protein levels induces antiproliferative effects in cancer cells that were attributed to the demethylation and reactivation of tumor suppressor genes. However, methylation changes have not been analyzed in detail yet. Using RNA interference we reduced DNMT3B protein levels in colon cancer cell lines. Our results confirm that depletion of DNMT3B specifically reduced the proliferation rate of DNMT3B-overexpressing colon cancer cell lines. However, genome-scale DNA methylation profiling failed to reveal methylation changes at putative DNMT3B target genes, even in the complete absence of DNMT3B. These results show that DNMT3B is dispensable for the maintenance of aberrant DNA methylation patterns in human colon cancer cells and they have important implications for the development of targeted DNA methyltransferase inhibitors as epigenetic cancer drugs.  相似文献   

12.
Autism spectrum disorder (ASD) is a frequent neurodevelopmental disorder characterized by variable clinical severity. Core symptoms are qualitatively impaired communication and social behavior, highly restricted interests and repetitive behaviors. Although recent work on genetic mutations in ASD has shed light on the pathophysiology of the disease, classifying it essentially as a synaptopathy, no treatments are available to date. To develop and test novel ASD treatment approaches, validated and informative animal models are required. Of particular interest, in this context are loss-of-function mutations in the postsynaptic cell adhesion protein neuroligin-4 and point mutations in its homologue neuroligin-3 (NL-3) that were found to cause certain forms of monogenic heritable ASD in humans. Here, we show that NL-3-deficient mice display a behavioral phenotype reminiscent of the lead symptoms of ASD: reduced ultrasound vocalization and a lack of social novelty preference. The latter may be related to an olfactory deficiency observed in the NL-3 mutants. Interestingly, such olfactory phenotype is also present in a subgroup of human ASD patients. Tests for learning and memory showed no gross abnormalities in NL-3 mutants. Also, no alterations were found in time spent in social interaction, prepulse inhibition, seizure propensity and sucrose preference. As often seen in adult ASD patients, total brain volume of NL-3 mutant mice was slightly reduced as assessed by magnetic resonance imaging (MRI). Our findings show that the NL-3 knockout mouse represents a useful animal model for understanding pathophysiological events in monogenic heritable ASD and for developing novel treatment strategies in this devastating human disorder.  相似文献   

13.
The unified idea on the molecular pathogenesis of Autism Spectrum Disorder (ASD) is still unknown although mutations in genes encoding neuroligins and SHANK3 have been shown in a small part of the patients. RA175/SynCAM1/CADM1(CADM1), a member of immunoglobulin superfamily, is another synaptic cell adhesion molecule. To clarify the idea that impaired synaptogenesis underlies the pathogenesis of ASD, we examined the relationship between mutations in the CADM1 gene and ASD. We found two missense mutations, C739A(H246N) and A755C(Y251S), in the CADM1 gene of male Caucasian ASD patients and their family members. Both mutations were located in the third immunoglobulin domain, which is essential for trans-active interaction. The mutated CADM1 exhibited less amount of high molecular weight with the matured oligosaccharide, defective trafficking to the cell surface, and more susceptibility to the cleavage and or degradation. Our findings provide key support for the unified idea that impaired synaptogenesis underlies the pathogenesis of ASD.  相似文献   

14.
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.  相似文献   

15.
Histone variant H3.3 is encoded by two genes, H3f3a and H3f3b, which can be expressed differentially depending on tissue type. Previous work in our lab has shown that knockout of H3f3b causes some neonatal lethality and infertility in mice, and chromosomal defects in mouse embryonic fibroblasts (MEFs). Studies of H3f3a and H3f3b null mice by others have produced generally similar phenotypes to what we found in our H3f3b nulls, but the relative impacts of the loss of either H3f3a or H3f3b have varied depending on the approach and genetic background. Here we used a knockout-first approach to target the H3f3a gene for inactivation in C57BL6 mice. Homozygous H3f3a targeting produced a lethal phenotype at or before birth. E13.5 null embryos had some potential morphological differences from WT littermates including smaller size and reduced head size. An E18.5 null embryo was smaller than its control littermates with several potential defects including small head and brain size as well as small lungs, which would be consistent with a late gestation lethal phenotype. Despite a reduction in H3.3 and total H3 protein levels, the only histone H3 post-translational modification in the small panel assessed that was significantly altered was the unique H3.3 mark phospho-Serine31, which was consistently increased in null neurospheres. H3f3a null neurospheres also exhibited consistent gene expression changes including in protocadherins. Overall, our findings are consistent with the model that there are differential, cell-type-specific contributions of H3f3a and H3f3b to H3.3 functions in epigenetic and developmental processes.  相似文献   

16.
Genes of the RAF family, which mediate cellular responses to growth signals, encode kinases that are regulated by RAS and participate in the RAS, RAF, mitogen/extracellular signal-regulated kinase, extracellular signal-regulated kinase and mitogen-activated protein kinase pathway. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation, it may provide possible diagnostic and therapeutic targets in human malignant tumors. We analyzed exon 15 of the BRAF gene for mutations in 58 lung, 12 breast, six kidney, 14 cervical, four endometrial and 10 ovarian carcinoma cell lines by PCR-SSCP and direct sequencing. The T1796A transversion was found in one (2.9%) of 34 small cell lung carcinoma and one (8.3%) of 12 breast carcinoma cell lines, resulting in a valine-to-glutamate substitution at residue 599 (V599E). One (4.2%) of 24 non-small cell lung carcinoma cell line showed the C1786G transversion, leading to a leucine-to-valine substitution at residue 596 (L596V). No BRAF point mutations were found in any of the other cell lines examined. Our present results suggest that BRAF may not be a frequent target of mutations involved in the pathogenesis of human lung, breast, kidney, cervical, endometrial and ovarian carcinomas.  相似文献   

17.
Zhu X  Wang F  Lin MC  Tian L  Fan W  Ng SS  Liu M  Huang J  Xu Z  Li D  Kung H 《PloS one》2011,6(3):e17783

Background

Elevated glucose-regulated protein 78 (GRP78) levels in tissues have been known to be related with poor prognosis in hepatocellular carcinoma (HCC) patients. Though the variants in the 3′ untranslated region (UTR) of GRP78 gene were not associated with HCC risk, we wonder whether these polymorphisms affect survival of HCC patients.

Methodology/Principal Findings

Blood samples of HCC patients were maintained in our specimen bank between 1996 to 2003. DNA from 576 unrelated and resectable patients with HCC was typed for rs16927997 (T>C), rs1140763 (T>C) and rs12009 (T>C) by TaqMan assays. The Kaplan-Meier method and log-rank test were used to estimate overall survival. Linkage disequilibrium (LD) analysis identified a total of 3 haplotypes and 6 diplotypes in this region. The distribution of haplotype was not related to the clinical characteristics. Univariate analysis showed that the allele, genotype, haplotype and diplotype did not effect the survival. None of the clinical features show a significant association (P correced>0.05) with overall patient outcome in multiple comparisons.

Conclusions/Significance

There is no noteworthy influence of 3′ UTR variants in the GRP78 on prognosis of resectable HCC in the Chinese population.  相似文献   

18.
An important aim in animal breeding is the improvement of growth and meat quality traits. Previous studies have demonstrated that genetic variants in the fat mass and obesity associated (FTO) gene have a relatively large effect on human obesity as well as on body composition in rodents and, more recently, in livestock. Here, we examined the effects of the FTO gene variants on growth and carcass traits in the Slovenian population of Simmental (SS) and Brown (SB) cattle. To validate and identify new polymorphisms, we used sequencing, PCR‐RFLP analysis and TaqMan assays in the SS breed and FTO gene variants data from the Illumina BovineSNP50 v1 array for the SB breed. Sequencing of the eight samples of progeny‐tested SS sires detected 108 single nucleotide polymorphisms (SNPs) in the bovine FTO gene. Statistical analyses between growth and carcass traits and 34 FTO polymorphisms revealed significant association of FTO variants with lean meat percentage in both breeds. Additionally, FTO SNPs analyzed in SS cattle were associated with fat percentage, bone weight and live weight at slaughter. The FTO gene can thus be regarded as a candidate gene for the marker‐assisted selection programs in our and possibly other populations of cattle. Future studies in cattle might reveal novel roles for the FTO gene in shaping carcass traits in livestock species as well as body composition control in other mammals.  相似文献   

19.
Molecular Biology Reports - Coronary artery disease (CAD) which is a complex cardiovascular disease is the leading cause of death worldwide. The changing prevalence of the disease in different...  相似文献   

20.
Otosclerosis is a common form of hearing loss characterized by abnormal bone remodeling in the otic capsule. It is considered a complex disease caused by both genetic and environmental factors. In a previous study, we identified a region on chr7q22.1 located in the RELN gene that is associated with otosclerosis in Belgian–Dutch and French populations. Evidence for allelic heterogeneity was found in this chromosomal region in the form of two independent signals. To confirm this finding, we have completed a replication study that includes four additional populations from Europe (1,141 total samples). Several SNPs in this region replicated in these populations separately. While the power to detect significant association in each population is small, when all four populations are combined, six of seven SNPs replicate and show an effect in the same direction as in the previous populations. We also confirmed the presence of allelic heterogeneity in this region. These data further implicate RELN in the pathogenesis of otosclerosis. Functional research is warranted to determine the pathways through which RELN acts in the pathogenesis of otosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号