首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA form with restricted binding of intercalating dyes (propidium iodide or ethidium bromide) has been found in bacteriophage φX-infected cells during the period of single-stranded DNA synthesis. In the electron microscope, this DNA form is seen to be a double-stranded DNA ring with two single-stranded DNA tails protruding from the same portion of the ring; it is composed of a linear φX DNA strand, longer than one φX genome, and a single-stranded ring complementary to φX DNA. Base-pairing of these two tails in partially complementary regions restricts unwinding of the double-stranded DNA ring and consequently intercalation and binding of the dyes. It is postulated that these molecules originate from a previously reported precursor of φX DNA, namely a double-stranded ring with a single-stranded tail, by branch migration.  相似文献   

2.
RecA protein makes stable joint molecules from fully duplex DNA and molecules that are partially single-stranded; the latter may be either duplex molecules with an internal gap in one strand or molecules with single-stranded ends. Stable joint molecules form only when the end of at least one strand is in a homologous region. When RecA protein pairs linear duplex molecules and tailed molecules that share the same sequence end to end, the joints, which are located away from the single-stranded tails in most instances, have the electron microscopic appearance associated with the Holliday structure resulting from the reciprocal exchange of strands. The reaction leading to reciprocal strand exchange involves the concerted displacement of a strand from the end of the duplex molecule. These observations support the view that RecA protein makes stable joint molecules only by transferring strands and not by the side-by-side pairing of duplex regions.  相似文献   

3.
Rolling circle replication has previously been reconstituted in vitro using M13 duplex circles containing preformed forks and the 10 purified T4 bacteriophage replication proteins. Leading and lagging strand synthesis in these reactions is coupled and the size of the Okazaki fragments produced is typical of those generated in T4 infections. In this study the structure of the DNAs and DNA-protein complexes engaged in these in vitro reactions has been examined by electron microscopy. Following deproteinization, circular duplex templates with linear tails as great as 100 kb are observed. The tails are fully duplex except for one to three single-stranded DNA segments close to the fork. This pattern reflects Okazaki fragments stopped at different stages in their synthesis. Examination of the DNA-protein complexes in these reactions reveals M13 duplex circles in which 64% contain a single large protein mass (replication complex) and a linear duplex tail. In 56% of the replicating molecules with a tail there is at least one fully duplex loop at the replication complex resulting from the portion of the lagging strand engaged in Okazaki fragment synthesis folding back to the replisome. The single-stranded DNA segments at the fork bound by gene 32 and 59 proteins are not extended but rather appear organized into highly compact structures ("bobbins"). These bobbins constitute a major portion of the mass of the full replication complex.  相似文献   

4.
An enzyme catalyzing homologous pairing of DNA chains has been extensively purified from mitotic yeast. The most highly purified fractions are enriched for a polypeptide with a molecular mass of approximately 120 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Protein-dependent pairing of single-stranded DNAs requires a divalent cation (Mg2+ or Ca2+) but proceeds rapidly in the absence of any nucleoside triphosphates. The kinetics of reassociation are extremely rapid, with more than 60% of the single-stranded DNA becoming resistant to S1 nuclease within 1 min at a ratio of 1 protein monomer/50 nucleotides. The results of enzyme titration and DNA challenge experiments suggest that this protein does not act catalytically during renaturation but is required stoichiometrically. The protein promotes formation of joint molecules between linear M13 replicative form DNA (form III) containing short single-stranded tails and homologous single-stranded M13 viral DNA. Removal of approximately 50 nucleotides from the ends of the linear duplex using either exonuclease III (5' ends) or T7 gene 6 exonuclease (3' ends) activates the duplex for extensive strand exchange. Electron microscopic analysis of product molecules suggests that the homologous circular DNA initially associates with the single-stranded tails of the duplexes, and the heteroduplex region is extended with displacement of the noncomplementary strand. The ability of this protein to pair and to promote strand transfer using either exonuclease III or T7 gene 6 exonuclease-treated duplex substrates suggests that this activity promotes heteroduplex extension in a nonpolar fashion. The biochemical properties of the transferase are consistent with a role for this protein in heteroduplex joint formation during mitotic recombination in Saccharomyces cerevisiae.  相似文献   

5.
A short single-stranded tail on one end of an otherwise duplex DNA molecule enables recA protein, in the presence of ATP and MgCl2, to form a complex with the DNA which extends into the duplex portion of the molecule. Nuclease protection studies at a concentration of MgCl2 which permits homologous pairing showed that cleavage by restriction endonucleases at sites throughout the duplex region was inhibited, whereas digestion by DNase I was not affected. These results indicate that recA protein binds to the duplex portion of tailed DNA allowing access by DNase I to a random sample of the many sites at which it cleaves, but providing limited protection of the relatively rare restriction sites. Electron microscopy revealed that the recA nucleoprotein complex with duplex DNA is indeed a segmented or interrupted filament that, with time, extends further from the single-stranded tail into the duplex region. recA protein binding extended into the duplex region more rapidly for duplexes with 5' tails than for those with 3' tails. These observations show that recA protein translocates from a single-stranded region into duplex DNA in the form of a segmented filament by a mechanism that is not strongly polarized.  相似文献   

6.
Cell-free extracts from M-13 am5 infected Escherichia coli cells which are highly concentrated on cellophane membrane disks replicate efficiently endogenous M-13 duplex DNA. If the reaction is carried out in the presence of bromodeoxyuridine triphosphate, the majority of the label is found in two classes of hybrid DNA molecules in which either the viral or the complementary strand is newly synthesized. A minor portion of the label is incorporated into fully synthetic duplex DNA. DNA synthesis requires ATP and is inhibited by nalidixic acid, novobiocin, and arabinosylnucleoside triphosphates. Rifampicin blocks preferentially the synthesis of molecules with labeled complementary strands. A similar effect is observed upon addition of the helix-destabilising M-13 gene V protein. In contrast, addition of E. coli helix-destabilising protein (Eco HD-protein) stimulates the synthesis of both types of hybrid DNA molecules as well as the formation of fully synthetic duplex DNA.  相似文献   

7.
Two proteins encoded by bacteriophage T7, the gene 2.5 single-stranded DNA binding protein and the gene 4 helicase, mediate homologous DNA strand exchange. Gene 2.5 protein stimulates homologous base pairing of two DNA molecules containing complementary single-stranded regions. The formation of a joint molecule consisting of circular, single-stranded M13 DNA, annealed to homologous linear, duplex DNA having 3'- or 5'-single-stranded termini of approximately 100 nucleotides requires stoichiometric amounts of gene 2.5 protein. In the presence of gene 4 helicase, strand transfer proceeds at a rate of > 120 nucleotides/s in a polar 5' to 3' direction with respect to the invading strand, resulting in the production of circular duplex M13 DNA. Strand transfer is coupled to the hydrolysis of a nucleoside 5'-triphosphate. The reaction is dependent on specific interactions between gene 2.5 protein and gene 4 protein.  相似文献   

8.
Replicative intermediates isolated from Escherichia coli cells infected with P2 gene B mutants were circular DNA molecules with single-stranded DNA tails, as opposed to the double-stranded DNA tails of wild-type replicative intermediates. The results show that the mutant replicative intermediates arose from aberrant DNA replication, aberrant due to a lack of lagging strand DNA synthesis, but with normal leading strand synthesis, so that only one circular duplex daughter DNA molecule was made from each duplex parent molecule. The single-stranded tails were shown to correspond to the nicked (and therefore displaced) parental DNA "l" strands. By partial denaturation mapping, the ends of the single-stranded tails tended to map close to the replication origin, but not all at a unique position, probably due to partial degradation or breakage in vivo, or during cell lysis or DNA isolation. By hybridization to separated strands of P2 DNA on nitrocellulose filters, DNA synthesis was shown to be asymmetric, and consistent with more leading strand than lagging strand synthesis having occurred. We concluded that the gene B protein is required for lagging strand DNA synthesis, but not for initiation, elongation or termination of the leading strand.  相似文献   

9.
DNA isolated from the hepatitis B antigen form known as the Dane particle was examined by electron microscopy before and after the endogenous Dane particle DNA polymerase reaction. The most frequently occurring form was an untwisted circular double-stranded DNA molecule approximately 1 mum in length. Less frequently occurring forms included circular DNA of approximately unit length and having one or more small single-stranded regions, similar circular molecules with one or more tails either shorter or longer than 1 mum in length, and very small circular molecules with tails. There was no increase in frequency or length of tails after a DNA polymerase reaction, suggesting that tails were not formed during this reaction. The mean length of circular molecules increased by 23% when DNA was spread in formamide compared with aqueous spreading, suggesting that single-stranded regions are present in most of the molecules. The mean length of circular molecules obtained from aqueous spreading increased by 27% after a Dane particle DNA polymerase reaction. This indicates that single-stranded regions were converted to double-stranded DNA during the reaction.  相似文献   

10.
Duplex DNA with a contiguous single-stranded tail was nearly as effective as single-stranded DNA in acting as a cofactor for the ATPase activity of recA protein at neutral pH and concentrations of MgCl2 that support homologous pairing. The ATP hydrolysis reached a steady state rate that was proportional to the length of the duplex DNA attached to a short 5' single-stranded tail after a lag. Separation of the single-stranded tail from most of the duplex portion of the molecule by restriction enzyme cleavage led to a gradual decline in ATP hydrolysis. Measurement of the rate of hydrolysis as a function of DNA concentration for both tailed duplex DNA and single-stranded DNA cofactors indicated that the binding site size of recA protein on a duplex DNA lattice, about 4 base pairs, is similar to that on a single-stranded DNA lattice, about four nucleotides. The length of the lag phase preceding steady state hydrolysis depended on the DNA concentration, length of the duplex region, and the polarity of the single-stranded tail, but was comparatively independent of tail length for tails over 70 nucleotides in length. The lag was 5-10 times longer for 3' than for 5' single-stranded tailed duplex DNA molecules, whereas the steady state rates of hydrolysis were lower. These observations show that, after nucleation of a recA protein complex on the single-stranded tail, the protein samples the entire duplex region via an interaction that is labile and not strongly polarized.  相似文献   

11.
E. coil RecA protein and topolsomerase I, acting on superhelical DNA and circular single strands in the presence of ATP and Mg2+, topologically link single-stranded molecules to one another, and single-stranded molecules to duplex DNA. When super-helical DNA is relaxed by prior incubation with topoisomerase, it is a poor substrate for catenation. Extensive homology stimulates the catenation of circular single-stranded DNA and superhelical DNA, whereas little reaction occurs between these forms of the closely related DNAs of phages φX174 and G4, indicating that, in conjunction with topoisomerase I, RecA protein can discriminate perfect or nearly perfect homology from a high degree of relatedness. Circular single-stranded G4 DNA reacts with superhelical DNA of a chimeric phage, M13Goril, to form catenanes, at least half of which survive heating at 80°C following restriction cleavage in the M13 region, but few of which survive following restriction cleavage in the G4 region. Electron microscopic examination of catenated molecules cleaved in the M13 region reveals that in most cases the single-stranded G4 DNA is joined to the linear duplex M13(G4) DNA in the homologous G4 region. The junction frequently has the appearance of a D loop, with an extent equivalent to 100 or more bp. We conclude that a significant fraction of catenanes were hemicatenanes, in which the single-stranded circle was topologically linked, probably by multiple turns, to its complementary strand in the duplex DNA. These observations support the previous conclusion that RecA protein can pair a single strand with its complementary strand in duplex DNA in a side-by-side fashion without a free end in any of the three strands.  相似文献   

12.
RecA protein catalyzes homologous pairing of partially single-stranded duplex DNA and fully duplex DNA to form stable joint molecules. We constructed circular duplex DNA with various defined gap lengths and studied the pairing reaction between the gapped substrate with fully double-stranded DNA. The reaction required a stoichiometric amount of RecA protein, and the optimal reaction was achieved at a ratio of 1 RecA monomer per 4 base pairs. The length of the gap, ranging from 141 to 1158 nucleotides, had little effect on the efficiency of homologous pairing. By using a circular gapped duplex DNA prepared from the chimeric phage M13Gori1, we were able to show the formation of nonintertwined or paranemic joints in duplex regions between the gapped and fully duplex molecules. The formation of such paranemic joints occurred efficiently and included nearly all of the DNA in the reaction mixture. The reaction required negative superhelicity, and pairing was greatly reduced with linear or nicked circular DNA. We conclude that one functional role of the single-stranded gap is for facilitating the binding of RecA protein to the duplex region of the gapped DNA. Once the nucleoprotein filament is formed, homologous pairing between the gapped and fully duplex DNA can take place anywhere along the length of the nucleoprotein complex.  相似文献   

13.
When recA protein pairs linear duplex DNA with a homologous duplex molecule that has a single-stranded tail, it produces a recombination intermediate called the Holliday structure and causes reciprocal or symmetric strand exchange, whereas the pairing of a linear duplex molecule with fully single-stranded DNA leads to an asymmetric exchange. To study the location of recA protein on DNA molecules undergoing symmetric exchange, we labeled individually each end of the four strands involved and looked for protection against DNase I or restriction endonucleases. As expected, because of its preferred binding to single-stranded DNA, recA protein protected the single-stranded tails of either substrates, or products. In addition however, strong protection extended into the newly formed heteroduplex DNA along the strand to which recA protein was initially bound. Experiments with uniformly labeled DNA showed a corresponding homology-dependent asymmetry in the protection of the tailed substrate versus its fully duplex partner. Restriction experiments showed that protection extended 50-75 base pairs beyond the point where strand exchange was blocked by a long region of heterology. When compared with earlier observations (Chow, S. A., Honigberg, S. M., Bainton, R. J., and Radding, C. M. (1986) J. Biol. Chem. 261, 6961-6971), the present experiments reveal a pattern of association of recA protein with DNA that suggests a common mechanism of asymmetric and symmetric strand exchange.  相似文献   

14.
The rolling circle DNA replication structures generated by the in vitro phage T4 replication system were analyzed using two-dimensional agarose gels. Replication structures were generated in the presence or absence of T4 primase (gp61), permitting the analysis of replication forks with either duplex or single-stranded tails. A characteristic arc shape was visualized when forks with single-stranded tails were cleaved by a restriction enzyme with the help of an oligonucleotide that anneals to restriction sites in the single-stranded tail. After calibrating the gel system with this well-studied rolling circle replication reaction, we then analyzed the in vivo replication directed by a T4 replication origin cloned within a plasmid. DNA samples were generated from infections with either wild-type or primase-deletion mutant phage. The only replicative arc that could be detected in the wild-type sample corresponded to duplex Y forms, consistent with very efficient lagging strand synthesis. Surprisingly, we obtained evidence for both duplex and single-stranded DNA tails in the samples from the primase-deficient infection. We conclude that a relatively inefficient mechanism primes lagging strand DNA synthesis in vivo when gp61 is absent.  相似文献   

15.
The DNA-binding, annealing and recombinational activities of purified RecA-DNA complexes stabilized by ATP gamma S (a slowly hydrolysable analog of ATP) are described. Electrophoretic analysis, DNase protection experiments and observations by electron microscopy suggest that saturated RecA complexes formed with single- or double-stranded DNA are able to accommodate an additional single strand of DNA with a stoichiometry of about one nucleotide of added single-stranded DNA per nucleotide or base-pair, respectively, of DNA resident in the complex. This strand uptake is independent of complementarity or homology between the added and resident DNA molecules. In the complex, the incoming and resident single-stranded DNA molecules are in close proximity as the two strands can anneal in case of their complementarity. Stable RecA complexes formed with single-stranded DNA bind double-stranded DNA efficiently when the added DNA is homologous to the complexed strand and then initiate a strand exchange reaction between the partner DNA molecules. Electron microscopy of the RecA-single-stranded DNA complexes associated with homologous double-stranded DNA suggests that a portion of duplex DNA is taken into the complex and placed in register with the resident single strand. Our experiments indicate that both DNA binding sites within RecA helical filaments can be occupied by either single- or double-stranded DNA. Presumably, the same first DNA binding site is used by RecA during its polymerization on single- or double-stranded DNA and the second DNA binding site becomes available for subsequent interaction of the protein-saturated complexes with naked DNA. The way by which additional DNA is taken into RecA-DNA complexes shows co-operative character and this helps to explain how topological problems are avoided during RecA-mediated homologous recombination.  相似文献   

16.
Homologous recombination of DNA molecules injected into Xenopus laevis oocyte nuclei is extremely efficient when those molecules are linear and have overlapping homologous ends. It was previously shown that a 5'----3' exonuclease activity in oocytes attacks injected linear DNAs and leaves them with single-stranded 3' tails. We tested the hypothesis that such tailed molecules are early intermediates on the pathway to recombination products. Substrates with 3' tails were made in vitro and injected into oocytes, where they recombined rapidly and efficiently. In experiments with mixed substrates, molecules with 3' tails entered recombination intermediates and products more rapidly than did molecules with flush ends. Molecules endowed in vitro with 5' tails also recombined efficiently in oocytes, but their rate was not faster than for flush-ended substrates. In most cases, the 5' tails served as templates for resynthesis of the 3' strands, regenerating duplex ends which then entered the normal recombination pathway. In oocytes from one animal, some of the 5' tails were removed, and this was exacerbated when resynthesis was partially blocked. Analysis by two-dimensional gel electrophoresis of recombination intermediates from 5'-tailed substrates confirmed that they had acquired 3' tails as a result of the action of the 5'----3' exonuclease. These results demonstrate that homologous recombination in oocytes proceeds via a pathway that involves single-stranded 3' tails. Molecular models incorporating this feature are discussed.  相似文献   

17.
DNA structure specificity of Rap endonuclease.   总被引:1,自引:0,他引:1       下载免费PDF全文
The Rap protein of phage lambda is an endonuclease that nicks branched DNA structures. It has been proposed that Rap can nick D-loops formed during phage recombination to generate splice products without the need for the formation of a 4-strand (Holliday) junction. The structure specificity of Rap was investigated using a variety of branched DNA molecules made by annealing partially complementary oligo-nucleotides. On Holliday junctions, Rap endonuclease shows a requirement for magnesium or manganese ions, with Mn(2+)supporting 5-fold more cleavage than Mg(2+). The location of endonuclease incisions was determined on 3'-tailed D-loop, bubble, flayed duplex, 5'-flap and Y junction DNA substrates. In all cases, Rap preferentially cleaves at the branch point of these molecules. With a flayed duplex, incisions are made in the duplex adjacent to the single-strand arms. Comparison of binding and cleavage specificities revealed that Rap is highly structure-specific and exhibits a clear preference for 4- and 3-stranded DNA over Y and flayed duplex DNA. Almost no binding or cleavage was detected with duplex, partial duplex and single-stranded DNA. Thus Rap endonuclease shows a bias for structures that resemble D-loop and Holliday junction recombination intermediates.  相似文献   

18.
Assays have been described in which duplex adeno-associated virus (AAV) DNA can be replicated in HeLa cell extracts with exogenous AAV Rep protein. These assays appear to mimic the AAV DNA replication that occurs in the cell, including the ability of extracts from adenovirus (Ad)-infected cells to replicate duplex AAV DNA templates more efficiently than extracts from uninfected cells can. We showed previously that the Ad-infected extract was able to support a more processive replication than the uninfected extract. When the Ad single-stranded DNA binding protein (Ad-DBP) was added to an uninfected extract, DNA replication became processive. Based on a strand displacement replication model, we hypothesized that the Ad-DBP was stabilizing the displaced single-stranded DNA during strand displacement replication. In this report, we show that in Ad-infected extracts most of the newly replicated duplex DNA is converted into a single-stranded form shortly after synthesis. Using the results of assays for the replication of single-stranded AAV DNA, we show that these single-stranded molecules serve as templates for additional replication. In addition, we identify a class of molecules which are likely to be intermediates of replication on single-stranded templates. We discuss a possible role for replication of single-stranded molecules in the infected cell.  相似文献   

19.
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.  相似文献   

20.
The rate of production of acid-soluble material during degradation of duplex DNA by Hemophilus influenzae ATP-dependent DNAse (Hind exonuclease V) has been shown to be directly dependent upon the Mg2+ concentration in the reaction mixture. At high concentrations of Mg2+ (5 to 20 mM), DNA degradation to acid-soluble products is rapid and the rate of ATP hydrolysis is slightly depressed. At low concentrations of Mg2+ (0.1 to 0.5 mM), the enzyme rapidly hydrolyzes ATP and converts up to 35% of linear duplex DNA to single-stranded material while degrading less than 0.2% of the DNA to acid-soluble products. We refer to this enzymatic production of single-stranded DNA as the "melting" activity. Under the conditions of our assay, the initial melting reaction is processive, lasting about 70s on phage T7 DNA. Using DNAs with several different lengths, we have established that the duration of the initial reaction is dependent upon DNA length, requiring approximately 1 s per 0.18 mum. The products of the initial reaction on phage T7 DNA are somewhat heterogeneous, consisting of short duplex fragments approximately 0.5 mum long, purely single-stranded products up to 7 mum long, and longer duplex fragments 3 to 11 mum in length, some of which have single-stranded tails. Nearly half of the single-stranded material remains linked to a duplex segment of DNA after the inital processive reaction. We propose that Hind exo V initiates attack at the DNA termini and then acts in a processive manner, migrating along the DNA molecule, converting some regions to single-stranded material by the combined action of the melting activity and limited phosphodiester cleavage, while leaving other regions double-stranded. At the completion of its processive movement through a single DNA molecule, it is released and then recycles onto either intact molecules or the partially degraded products, continuing in this manner until the DNA is finally reduced to oligonucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号