首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The malignancy of alveolar rhabdomyosarcoma (ARMS) has been linked to expression of the PAX3-FKHR chimeric gene. To understand the effect of this gene, we used RNAi to knock down its expression (without affecting the expressions of either PAX3 or FKHR) in human ARMS cell lines. Down-regulating PAX3-FKHR caused (a) tumor cells to accumulate in the G1 phase, inhibiting the rate of cellular proliferation, (b) a reduction in the levels of the MET, reducing cell motility stimulated by HGF, and (c) induction of the myogenic differentiation gene, myogenin, and muscle differentiation (morphologic change and the expression of muscle specific proteins, desmin, and myosin heavy chain). These results suggest that PAX3-FKHR in ARMS cells promotes malignant phenotypes such as proliferation, motility, and to suppress differentiation.  相似文献   

4.
5.
6.
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13) chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.  相似文献   

7.
MYOGENIN is a member of the muscle regulatory factor family that orchestrates an obligatory step in myogenesis, the terminal differentiation of skeletal muscle cells. A paradoxical feature of alveolar rhabdomyosarcoma (ARMS), a prevalent soft tissue sarcoma in children arising from cells with a myogenic phenotype, is the inability of these cells to undergo terminal differentiation despite the expression of MYOGENIN. The chimeric PAX3-FOXO1 fusion protein which results from a chromosomal translocation in ARMS has been implicated in blocking cell cycle arrest, preventing myogenesis from occurring. We report here that PAX3-FOXO1 enhances glycogen synthase kinase 3β (GSK3β) activity which in turn represses MYOGENIN activity. MYOGENIN is a GSK3β substrate in vitro on the basis of in vitro kinase assays and MYOGENIN is phosphorylated in ARMS-derived RH30 cells. Constitutively active GSK3β(S9A) increased the level of a phosphorylated form of MYOGENIN on the basis of western blot analysis and this effect was reversed by neutralization of the single consensus GSK3β phosphoacceptor site by mutation (S160/164A). Congruently, GSK3β inhibited the trans-activation of an E-box reporter gene by wild-type MYOGENIN, but not MYOGENIN with the S160/164A mutations. Functionally, GSK3β repressed muscle creatine kinase (MCK) promoter activity, an effect which was reversed by the S160/164A mutated MYOGENIN. Importantly, GSK3β inhibition or exogenous expression of the S160/164A mutated MYOGENIN in ARMS reduced the anchorage independent growth of RH30 cells in colony-formation assays. Thus, sustained GSK3β activity represses a critical regulatory step in the myogenic cascade, contributing to the undifferentiated, proliferative phenotype in alveolar rhabdomyosarcoma (ARMS).  相似文献   

8.
The t(2;13) chromosomal translocation is found in the majority of human alveolar rhabdomyosarcomas (RMS). The resulting PAX3-FKHR fusion protein contains PAX3 DNA-binding domains fused to the potent transactivation domain of FKHR, suggesting that PAX3-FKHR functions to deregulate PAX3-specific target genes and signaling pathways. We previously developed transgenic mice expressing PAX3-FKHR under the control of mouse Pax3 regulatory sequences to test this hypothesis. We reported that PAX3-FKHR interferes with normal Pax3 developmental functions, with mice exhibiting neural tube and neural crest abnormalities that mimic those found in Pax3-deficient Splotch mice. Here we expanded those studies to show that developmental expression of PAX3-FKHR results in aberrant myogenesis in the developing somites and neural tube, leading to ectopic skeletal muscle formation in the mature spinal cord. Gene expression profiling indicated that PAX3-FKHR expression in the developing neural tube induces a myogenic pattern of gene expression at the expense of the normal neurogenic program. Somite defects in PAX3-FKHR transgenic animals resulted in skeletal malformations that included rib fusions and mis-attachments. As opposed to the neural tube defects, the severity of the rib phenotype was rescued by reducing Pax3 levels through mating with Splotch mice. Embryos from the transgenic line expressing the highest levels of PAX3-FKHR had severe neural tube defects, including exencephaly, and almost half of the embryos died between gestational ages E13.5-E15.5. Nearly all of the embryos that survived to term died after birth due to severe spina bifida, rather than the absence of a muscular diaphragm. These studies reveal a prominent role for PAX3-FKHR in disrupting Pax3 functions and in deregulating skeletal muscle development, suggesting that this fusion protein plays a critical role in the pathogenesis of␣alveolar RMS by influencing the commitment␣and differentiation of the myogenic cell lineage.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

9.
10.
11.
12.
Myogenin is required not for the initiation of myogenesis but instead for skeletal muscle formation through poorly understood mechanisms. We demonstrate in cultured cells and, for the first time, in embryonic tissue, that myogenic late genes that specify the skeletal muscle phenotype are bound by MyoD prior to the initiation of gene expression. At the onset of muscle specification, a transition from MyoD to myogenin occurred at late gene loci, concomitant with loss of HDAC2, the appearance of both the Mef2D regulator and the Brg1 chromatin-remodeling enzyme, and the opening of chromatin structure. We further demonstrated that ectopic expression of myogenin and Mef2D, in the absence of MyoD, was sufficient to induce muscle differentiation in a manner entirely dependent on Brg1. These results indicate that myogenin specifies the muscle phenotype by cooperating with Mef2D to recruit an ATP-dependent chromatin-remodeling enzyme that alters chromatin structure at regulatory sequences to promote terminal differentiation.  相似文献   

13.
14.
15.
16.
Alpha sarcoglycan (α-SG) is highly expressed in differentiated striated muscle, and its disruption causes limb-girdle muscular dystrophy. Accordingly, the myogenic master regulator MyoD finely modulates its expression. However, the mechanisms preventing α-SG gene expression at early stages of myogenic differentiation remain unknown. In this study, we uncovered Sox9, which was not previously known to directly bind muscle gene promoters, as a negative regulator of α-SG gene expression. Reporter gene and chromatin immunoprecipitation assays revealed three functional Sox-binding sites that mediate α-SG promoter activity repression during early myogenic differentiation. In addition, we show that Sox9-mediated inhibition of α-SG gene expression is independent of MyoD. Moreover, we provide evidence suggesting that Smad3 enhances the repressive activity of Sox9 over α-SG gene expression in a transforming growth factor-β-dependent manner. On the basis of these results, we propose that Sox9 and Smad3 are responsible for preventing precocious activation of α-SG gene expression during myogenic differentiation.  相似文献   

17.
18.
19.
20.
The migration of myogenic precursors to the vertebrate limb exemplifies a common problem in development - namely, how migratory cells that are committed to a specific lineage postpone terminal differentiation until they reach their destination. Here we show that in chicken embryos, expression of the Msx1 homeobox gene overlaps with Pax3 in migrating limb muscle precursors, which are committed myoblasts that do not express myogenic differentiation genes such as MyoD. We find that ectopic expression of Msx1 in the forelimb and somites of chicken embryos inhibits MyoD expression as well as muscle differentiation. Conversely, ectopic expression of Pax3 activates MyoD expression, while co-ectopic expression of Msx1 and Pax3 neutralizes their effects on MyoD. Moreover, we find that Msx1 represses and Pax3 activates MyoD regulatory elements in cell culture, while in combination, Msx1 and Pax3 oppose each other's trancriptional actions on MyoD. Finally, we show that the Msx1 protein interacts with Pax3 in vitro, thereby inhibiting DNA binding by Pax3. Thus, we propose that Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors via direct protein-protein interaction. Our results implicate functional antagonism through competitive protein-protein interactions as a mechanism for regulating the differentiation state of migrating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号