首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.  相似文献   

2.
New paradigms have been recently proposed in the pathogenesis of both chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), evidencing surprising similarities between these deadly diseases, despite their obvious clinical, radiological and pathologic differences. There is growing evidence supporting a "double hit" pathogenic model where in both COPD and IPF the cumulative action of an accelerated senescence of pulmonary parenchyma (determined by either telomere dysfunction and/or a variety of genetic predisposing factors), and the noxious activity of cigarette smoke-induced oxidative damage are able to severely compromise the regenerative potential of two pulmonary precursor cell compartments (alveolar epithelial precursors in IPF, mesenchymal precursor cells in COPD/emphysema). The consequent divergent derangement of signalling pathways involved in lung tissue renewal (mainly Wnt and Notch), can eventually lead to the distinct abnormal tissue remodelling and functional impairment that characterise the alveolar parenchyma in these diseases (irreversible fibrosis and bronchiolar honeycombing in IPF, emphysema and airway chronic inflammation in COPD).  相似文献   

3.
ObjectivesChronic obstructive pulmonary disease (COPD) is characterized by irreversible lung tissue damage including chronic bronchitis and emphysema, which could further develop into respiratory failure. Many studies have revealed a potential regenerative function of the distal airway stem/progenitor cells (DASCs) after lung injury.Materials and MethodsMouse and human DASCs were expanded, analysed, and engrafted into injured mouse lungs. Single‐cell analyses were performed to reveal the differentiation path of the engrafted cells. Finally, human DASCs were transplanted into COPD mice induced by porcine pancreatic elastase (PPE) and lipopolysaccharide (LPS) administration.ResultsWe showed that isolated mouse and human DASCs could be indefinitely expanded and were able to further differentiate into mature alveolar structures in vitro. Single‐cell analysis indicated that the engrafted cells expressed typical cellular markers of type I alveolar cells as well as the specific secreted proteins. Interestingly, transplantation of human DASCs derived from COPD patients into the lungs of NOD‐SCID mice with COPD injury repaired the tissue damage and improved the pulmonary function.ConclusionsThe findings demonstrated that functional lung structure could be reconstituted by intrapulmonary transplantation of DASCs, suggesting a potential therapeutic role of DASCs transplantation in treatment for chronic obstructive pulmonary disease.  相似文献   

4.
The reported pluripotential capabilities of many human stem cell types has made them an attractive area of research, given the belief they may hold considerable therapeutic potential for treating a wide range of human diseases and injuries. Although the bulk of stem cell based research has focused on developing procedures for the treatment of pancreatic, neural, cardiovascular and haematopoietic diseases, the potential for deriving respiratory cell types from stem cells for treatment of respiratory specific diseases has also been explored. It is suggested that stem cell derivatives may be used for lung replacement/regeneration therapeutics and high though-put pharmacological screening strategies for a variety of respiratory injuries and diseases including: cystic fibrosis, chronic obstructive pulmonary disease, respiratory distress syndrome, pulmonary fibrosis and pulmonary edema. This review will explore recent progress in characterizing adult respiratory and bone marrow derived stem cells with respiratory potential as well as the endogenous mechanisms directing the homing of these cells to the diseased and injured lung. In addition, the potential for embryonic stem cell based therapies in this domain as well as the histological, anatomical and molecular aspects of respiratory development will be summarized.  相似文献   

5.
成体干细胞来源广泛,无伦理争议,成为近几年的关注热点。研究表明以骨髓来源的间充质干细胞为代表的成体干细胞具有较强的多系分化潜能,可以广泛的参与包括肺在内的受损组织的修复与重建。在动物实验中已观察到,供体来源的成体干细胞可以定向分化为受损肺组织的多种功能细胞,并且有抑制纤维化等病变产生的能力。在本文中,回顾了近年来与肺损伤重建和疾病治疗相关的干细胞研究的最新进展,并探讨了成体干细胞治疗肺疾病与损伤的临床应用前景。  相似文献   

6.
Respiratory diseases, including coronavirus disease 2019 and chronic obstructive pulmonary disease (COPD), are leading causes of global fatality. There are no effective and curative treatments, but supportive care only. Cell therapy is a promising therapeutic strategy for refractory and unmanageable pulmonary illnesses, as proved by accumulating preclinical studies. Stem cells consist of totipotent, pluripotent, multipotent, and unipotent cells with the potential to differentiate into cell types requested for repair. Mesenchymal stromal cells, endothelial progenitor cells, peripheral blood stem cells, and lung progenitor cells have been applied to clinical trials. To date, the safety and feasibility of stem cell and extracellular vesicles administration have been confirmed by numerous phase I/II trials in patients with COPD, acute respiratory distress syndrome, bronchial dysplasia, idiopathic pulmonary fibrosis, pulmonary artery hypertension, and silicosis. Five routes and a series of doses have been tested for tolerance and advantages of different regimes. In this review, we systematically summarize the global trends for the cell therapy of common airway and lung diseases registered for clinical trials. The future directions for both new clinical trials and preclinical studies are discussed.  相似文献   

7.
Kumar PA  Hu Y  Yamamoto Y  Hoe NB  Wei TS  Mu D  Sun Y  Joo LS  Dagher R  Zielonka EM  Wang de Y  Lim B  Chow VT  Crum CP  Xian W  McKeon F 《Cell》2011,147(3):525-538
The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.  相似文献   

8.
Somatic stem/progenitor cells are known to be present in most adult tissues. However, those in the lung have limited abilities for tissue regeneration after serious damage as a result of chronic disease. Therefore, regenerative medicine using exogenous stem cells has been suggested for the treatment of progressive lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis. Embryonic stem (ES) cells and induced pluripotent stem cells, with their potent differentiation abilities, are promising sources for the generation of various tissue cells. In this study, we investigated the effects of various differentiation-inducing growth factors on the differentiation of lung cells from ES cells in vitro. Several factors, including activin, nodal, and noggin, significantly promoted the induction of Nkx2.1-positive lung progenitor cells when cells were cultured as embryoid bodies. Bone morphogenetic protein (BMP) 4 signaling controls the lineage commitment of lung cells along the proximal–distal axis. BMP4 promotes the induction of distal cell lineages of alveolar bud, such as Clara cells and mucus-producing goblet cells. These results suggest that several developmentally essential factors, including nodal/activin and BMP signaling, are important in the control of the differentiation of lung epithelial cells from mouse ES cells in vitro.  相似文献   

9.
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling system regulates a variety of biological processes, including embryogenesis, angiogenesis, wound repair, tissue homeostasis, and cancer. It exerts these regulatory functions by controlling proliferation, differentiation, migration, survival, and metabolism of target cells. The morphological structure of the lung is a complex tree-like network for effective oxygen exchange, and the airway terminates in the middle and distal ends of many alveoli. FGF/FGFR signaling plays an important role in the pathophysiology of lung development and pathogenesis of various human respiratory diseases. Here, we mainly review recent advances in FGF/FGFR signaling during human lung development and respiratory diseases, including lung cancer, acute lung injury (ALI), pulmonary arterial hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma, and pulmonary fibrosis.  相似文献   

10.
Pieper MP  Chaudhary NI  Park JE 《Life sciences》2007,80(24-25):2270-2273
Acetylcholine (ACh) has been suggested to exert various pathophysiological activities in the airways in addition to vagally-induced bronchoconstriction. This archetypal neurotransmitter and other components of the cholinergic system are expressed in a number of non-neuronal cells in the airways. Non-neuronal ACh released from these cells may affect fibroblasts (Fb) as well as inflammatory cells in lung tissue. Tiotropium bromide is a once-a-day antimuscarinic drug, marketed under the brand name Spiriva, for the treatment of chronic obstructive pulmonary disease (COPD). Besides its proven direct bronchodilatory activity, recent evidence suggests that tiotropium may be able to reduce the frequency of exacerbations and attenuate the decline in lung function, thus improving the course of obstructive airway diseases. The aim of the present study was to investigate the effects of tiotropium on the ACh-induced proliferation of primary human Fb isolated from biopsies of lung fibrosis patients and myofibroblasts (MyFb) derived from these cells. A human lung Fb cell line acted as control. Expression of muscarinic receptor subtypes M1, M2 and M3 was demonstrated by RT-PCR in both cell types. Acetylcholine stimulated proliferation in all cells investigated. Tiotropium concentration-dependently inhibited the ACh-induced proliferation in both the Fb and MyFb with a maximum effect at 30 nM. These results suggest that cholinergic stimuli mediated by muscarinic receptors could contribute to remodeling processes in chronic airway disease. Tiotropium bromide may have a beneficial influence on airway remodeling processes in chronic airway diseases through antiproliferative effects on fibroblasts and myofibroblasts.  相似文献   

11.
目的探讨急性呼吸窘迫综合征(ARDS)小鼠肺组织中肺内源性干细胞的表达水平。 方法10只C57BL/6小鼠分成两组:实验组和对照组,实验组通过气管内注射脂多糖(LPS)构建小鼠ARDS模型,采用气管内注射PBS作为对照组;采用胶原酶、热消化法消化小鼠肺组织获取小鼠肺单细胞悬液;双重免疫荧光染色方法鉴定小鼠肺组织中sca-1+CD31-CD45-细胞;流式细胞术对肺sca-1+CD31-CD45-细胞进行分选。采用方差分析及独立t检验进行统计学分析。 结果通过气管内注入LPS成功制作小鼠急性ARDS模型;5只小鼠的全肺组织制备单细胞悬液总数目达5×107个/ml,活细胞百分比为98﹪;肺内源性干细胞包括Ⅱ型肺泡上皮细胞、clara细胞以及支气管肺泡干细胞等,通过肺组织双重免疫荧光染色,验证小鼠肺组织Ⅱ型肺泡上皮细胞、clara细胞以及支气管肺泡干细胞;对照组及实验组各样本肺内源性干细胞数目占单细胞悬液细胞数比例呈正态分布,且实验组肺内源性干细胞数目水平(10.73±10.65)﹪较对照组水平(12.23±0.73)﹪降低(t = -3.405,P < 0.01)。 结论ARDS时,小鼠肺内源性干细胞(sca-1+CD31-CD45-)水平降低,减少的肺内源性干细胞具体去向尚不明确,其有可能参与机体急性炎症过程中气道上皮细胞的修复、再生过程。  相似文献   

12.
Ali Assad N  Sood A 《Biochimie》2012,94(10):2180-2189
Adipose tissue produces leptin and adiponectin - energy-regulating adipokines that may also play a role in inflammatory pulmonary conditions, as suggested by some murine studies. Leptin and adiponectin and their respective receptors are expressed in the human lung. The association between systemic or airway leptin and asthma in humans is currently controversial, particularly among adults. The majority of the evidence among children however suggests that systemic leptin may be associated with greater asthma prevalence and severity, particularly among prepubertal boys and peripubertal/postpubertal girls. Systemic and airway leptin concentrations may also be disproportionately higher in chronic obstructive pulmonary disease (COPD) patients, particularly among women, and reflect greater airway inflammation and disease severity. Quite like leptin, the association between systemic and airway adiponectin and asthma in humans is also controversial. Some but not all studies, demonstrate that serum adiponectin concentrations are protective against asthma among premenopausal women and peripubertal girls. On the other hand, serum adiponectin concentrations are inversely associated with asthma severity among boys but positively associated among men. Further, systemic and airway adiponectin concentrations are higher in COPD patients than controls, as demonstrated by case-control studies of men. Systemic adiponectin is also positively associated with lung function in healthy adults but inversely associated with lung function in subjects with COPD. It is therefore possible that pro-inflammatory effects of adiponectin dominate under certain physiologic conditions and anti-inflammatory effects under others. The adipokine-lung disease literature has critical gaps that include a lack of adequately powered longitudinal or weight-intervention studies; inadequate adjustment for confounding effect of obesity; and unclear understanding of potential sex interactions. It is also uncertain whether adipokine derangements precede pulmonary disease or are a consequence of it. Future research will determine whether modulation of adipokines, independent of BMI, may allow novel ways to prevent or treat inflammatory pulmonary conditions.  相似文献   

13.
Asthma, chronic obstructive pulmonary disorder (COPD), and cystic fibrosis (CF), chronic diseases of the airways, are characterized by symptoms such as inflammation of the lung tissue, mucus hypersecretion, constriction of the airways, and excessive fibrosis of airway tissue. Transforming growth factor (TGF)-beta, a cytokine that affects many different cell processes, has an important role in the lungs of patients with some of these chronic airway diseases, especially with respect to airway remodeling. Eosinophils can be activated by and are a major source of TGF-beta in asthma. The action of TGF-beta also shows associations with other cell types, such as T cells and neutrophils, which are involved in the pathogenesis of asthma. TGF-beta can perpetuate the pathogenesis of COPD and CF, as well, through its induction of inflammation via release from and action on different cells. The intracellular signaling induced by TGF-beta in various cell types has been elucidated and may point to mechanisms of action by TGF-beta on different structural or immune cells in these airway diseases. Some possible treatments, especially that prevent the deleterious airway changes induced by the action of either eosinophils or TGF-beta in asthma, have been investigated. TGF-beta-induced signaling pathways, especially those in different cell types in asthma, COPD, or CF, may provide potential therapeutic targets for the treatment of some of the most devastating airway diseases.  相似文献   

14.

Background

Alteration of functional regenerative properties of parenchymal lung fibroblasts is widely proposed as a pathogenic mechanism for chronic obstructive pulmonary disease (COPD). However, what these functions are and how they are impaired in COPD remain poorly understood. Apart from the role of fibroblasts in producing extracellular matrix, recent studies in organs different from the lung suggest that such cells might contribute to repair processes by acting like mesenchymal stem cells. In addition, several reports sustain that the Hedgehog pathway is altered in COPD patients thus aggravating the disease. Nevertheless, whether this pathway is dysregulated in COPD fibroblasts remains unknown.

Objectives and Methods

We investigated the stem cell features and the expression of Hedgehog components in human lung fibroblasts isolated from histologically-normal parenchymal tissue from 25 patients—8 non-smokers/non-COPD, 8 smokers-non COPD and 9 smokers with COPD—who were undergoing surgery for lung tumor resection.

Results

We found that lung fibroblasts resemble mesenchymal stem cells in terms of cell surface marker expression, differentiation ability and immunosuppressive potential and that these properties were altered in lung fibroblasts from smokers and even more in COPD patients. Furthermore, we showed that some of these phenotypic changes can be explained by an over activation of the Hedgehog signaling in smoker and COPD fibroblasts.

Conclusions

Our study reveals that lung fibroblasts possess mesenchymal stem cell-features which are impaired in COPD via the contribution of an abnormal Hedgehog signaling. These processes should constitute a novel pathomechanism accounting for disease occurrence and progression.  相似文献   

15.
The effects of a second generation p38 mitogen-activated protein kinase (MAPK) inhibitor, SB 239063 [trans-1-(4-hydroxycyclohexyl)-4-(4-fluorophenyl)-5-(2-methoxypyridim idi n-4-yl)imidazole; IC(50) = 44 nM vs. p38 alpha], were assessed in models that represent different pathological aspects of chronic obstructive pulmonary disease (COPD) [airway neutrophilia, enhanced cytokine formation and increased matrix metalloproteinase (MMP)-9 activity] and in a model of lung fibrosis. Airway neutrophil infiltration and interleukin (IL)-6 levels, assessed by bronchoalveolar lavage 48 h after lipopolysaccharide (LPS) inhalation, were inhibited dose dependently by 3-30 mg/kg of SB 239063 given orally twice a day. In addition, SB 239063 (30 mg/kg orally) attenuated IL-6 bronchoalveolar lavage fluid concentrations (>90% inhibition) and MMP-9 activity (64% inhibition) assessed 6 h after LPS exposure. In guinea pig cultured alveolar macrophages, SB 239063 inhibited LPS-induced IL-6 production (IC(50) of 362 nM). In a bleomycin-induced pulmonary fibrosis model in rats, treatment with SB 239063 (2.4 or 4.8 mg/day via osmotic pump) significantly inhibited bleomycin-induced right ventricular hypertrophy (indicative of secondary pulmonary hypertension) and increases in lung hydroxyproline synthesis (indicative of collagen synthesis and fibrosis). Therefore, SB 239063 demonstrates activity against a range of sequelae commonly associated with COPD and fibrosis, supporting the therapeutic potential of p38 MAPK inhibitors such as SB 239063 in chronic airway disease.  相似文献   

16.

Background

Epithelial-mesenchymal transition (EMT) plays a crucial role in small airway fibrosis of patients with chronic obstructive pulmonary disease (COPD). Increasing evidence suggests that the urokinase plasminogen activator receptor (uPAR) is involved in the pathogenesis of COPD. Increased uPAR expression has been implicated in the promotion of EMT in numerous cancers; however the role of uPAR in EMT in small airway epithelial cells of patients with COPD remains unclear. In this study, we investigated the degree of EMT and uPAR expression in lung epithelium of COPD patients, and verified the effect of uPAR on cigarette smoke extract (CSE)-induced EMT in vitro.

Methods

The expression of EMT biomarkers and uPAR was assessed in lung epithelium specimens from non-smokers (n = 25), smokers (n = 25) and non-smokers with COPD (n = 10) and smokers with COPD (n = 18). The role of uPAR on CSE-induced EMT in human small airway epithelial cells (HSAEpiCs) was assessed by silencing uPAR expression in vitro.

Results

Markers of active EMT and uPAR expression were significantly increased in the small airway epithelium of patients with COPD compared with controls. We also observed a significant correlation between uPAR and vimentin expression in the small airway epithelium. In vitro, CSE-induced EMT in HSAEpiCs was associated with high expression of uPAR, and targeted silencing of uPAR using shRNA inhibited CSE-induced EMT. Finally, we demonstrate that the PI3K/Akt signaling pathway is required for uPAR-mediated EMT in HSAEpiCs.

Conclusions

A uPAR-dependent signaling pathway is required for CSE-induced EMT, which contributes to small airway fibrosis in COPD. We propose that increased uPAR expression in the small airway epithelium of patients with COPD participates in an active EMT process.  相似文献   

17.
MicroRNAs (miRNAs) have emerged as a class of regulatory RNAs with immense significance in numerous biological processes. When aberrantly expressed miRNAs have been shown to play a role in the pathogenesis of several disease states. Extensive research has explored miRNA involvement in the development and fate of immune cells and in both the innate and adaptive immune responses whereby strong evidence links miRNA expression to signalling pathways and receptors with critical roles in the inflammatory response such as NF-κB and the toll-like receptors, respectively. Recent studies have revealed that unique miRNA expression profiles exist in inflammatory lung diseases such as cystic fibrosis, chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis and lung cancer. Evaluation of the global expression of miRNAs provides a unique opportunity to identify important target gene sets regulating susceptibility and response to infection and treatment, and control of inflammation in chronic airway disorders. Over 800 human miRNAs have been discovered to date, however the biological function of the majority remains to be uncovered. Understanding the role that miRNAs play in the modulation of gene expression leading to sustained chronic pulmonary inflammation is important for the development of new therapies which focus on prevention of disease progression rather than symptom relief. Here we discuss the current understanding of miRNA involvement in innate immunity, specifically in LPS/TLR4 signalling and in the progression of the chronic inflammatory lung diseases cystic fibrosis, COPD and asthma. miRNA in lung cancer and IPF are also reviewed.  相似文献   

18.
Tissue resident mesenchymal stem cells (MSC) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Taken together these studies suggest that resident lung MSC play a role during pulmonary tissue homeostasis, injury and repair during diseases such as pulmonary fibrosis (PF) and arterial hypertension (PAH). Here we describe a technology to define a population of resident lung MSC. The definition of this population in vivo pulmonary tissue using a define set of markers facilitates the repeated isolation of a well-characterized stem cell population by flow cytometry and the study of a specific cell type and function.  相似文献   

19.
Progressive pulmonary inflammation and emphysema have been implicated in the progression of chronic obstructive pulmonary disease (COPD), while current pharmacological treatments are not effective. Transplantation of bone marrow mesenchymal stem cells (MSCs) has been identified as one such possible strategy for treatment of lung diseases including acute lung injury (ALI) and pulmonary fibrosis. However, their role in COPD still requires further investigation. The aim of this study is to test the effect of administration of rat MSCs (rMSCs) on emphysema and pulmonary function. To accomplish this study, the rats were exposed to cigarette smoke (CS) for 11 weeks, followed by administration of rMSCs into the lungs. Here we show that rMSCs infusion mediates a down‐regulation of pro‐inflammatory mediators (TNF‐α, IL‐1β, MCP‐1, and IL‐6) and proteases (MMP9 and MMP12) in lung, an up‐regulation of vascular endothelial growth factor (VEGF), VEGF receptor 2, and transforming growth factor (TGFβ‐1), while reducing pulmonary cell apoptosis. More importantly, rMSCs administration improves emphysema and destructive pulmonary function induced by CS exposure. In vitro co‐culture system study of human umbilical endothelial vein cells (EA.hy926) and human MSCs (hMSCs) provides the evidence that hMSCs mediates an anti‐apoptosis effect, which partly depends on an up‐regulation of VEGF. These findings suggest that MSCs have a therapeutic potential in emphysematous rats by suppressing the inflammatory response, excessive protease expression, and cell apoptosis, as well as up‐regulating VEGF, VEGF receptor 2, and TGFβ‐1. J. Cell. Biochem. 114: 323–335, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

20.

Background

Stem cell transplantation is a promising method for the treatment of chronic obstructive pulmonary disease (COPD), and mesenchymal stem cells (MSCs) have clinical potential for lung repair/regeneration. However, the rates of engraftment and differentiation are generally low following MSC therapy for lung injury. In previous studies, we constructed a pulmonary surfactant-associated protein A (SPA) suicide gene system, rAAV-SPA-TK, which induced apoptosis in alveolar epithelial type II (AT II) cells and vacated the AT II cell niche. We hypothesized that this system would increase the rates of MSC engraftment and repair in COPD rats.

Methods

The MSC engraftment rate and morphometric changes in lung tissue in vivo were investigated by in situ hybridization, hematoxylin and eosin staining, Masson’s trichrome staining, immunohistochemistry, and real-time PCR. The expression of hypoxia inducible factor (HIF-1α) and stromal cell-derived factor-1 (SDF-1), and relationship between HIF-1α and SDF-1 in a hypoxic cell model were analyzed by real-time PCR, western blotting, and enzyme-linked immunosorbent assay.

Results

rAAV-SPA-TK transfection increased the recruitment of MSCs but induced pulmonary fibrosis in COPD rats. HIF-1α and SDF-1 expression were enhanced after rAAV-SPA-TK transfection. Hypoxia increased the expression of HIF-1α and SDF-1 in the hypoxic cell model, and SDF-1 expression was augmented by HIF-1α under hypoxic conditions.

Conclusions

Vacant AT II cell niches increase the homing and recruitment of MSCs to the lung in COPD rats. MSCs play an important role in lung repair and promote collagen fiber deposition after induction of secondary damage in AT II cells by rAAV-SPA-TK, which involves HIF-1α and SDF-1 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号