首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Many environmental applications exist for biosensors capable of providing real-time analyses. One pressing current need is monitoring for agents of chemical- and bio-terrorism. These applications require systems that can rapidly detect small organics including nerve agents, toxic proteins, viruses, spores and whole microbes. A second area of application is monitoring for environmental pollutants. Processing of grab samples through chemical laboratories requires significant time delays in the analyses, preventing the rapid mapping and cleanup of chemical spills. The current state of development of miniaturized, integrated surface plasmon resonance (SPR) sensor elements has allowed for the development of inexpensive, portable biosensor systems capable of the simultaneous analysis of multiple analytes. Most of the detection protocols make use of antibodies immobilized on the sensor surface. The Spreeta 2000 SPR biosensor elements manufactured by Texas Instruments provide three channels for each sensor element in the system. A temperature-controlled two-element system that monitors for six analytes is currently in use, and development of an eight element sensor system capable of monitoring up to 24 different analytes will be completed in the near future. Protein toxins can be directly detected and quantified in the low picomolar range. Elimination of false positives and increased sensitivity is provided by secondary antibodies with specificity for different target epitopes, and by sensor element redundancy. Inclusion of more than a single amplification step can push the sensitivity of toxic protein detection to femtomolar levels. The same types of direct detection and amplification protocols are used to monitor for viruses and whole bacteria or spores. Special protocols are required for the detection of small molecules. Either a competition type assay where the presence of analyte inhibits the binding of antibodies to surface-immobilized analyte, or a displacement assay, where antibodies bound to analyte on the sensor surface are displaced by free analyte, can be used. The small molecule detection assays vary in sensitivity from the low micromolar range to the high picomolar.

  相似文献   

2.
Ultrasensitive molecular beacon (MB) DNA biosensors, with micrometer to submicrometer sizes, have been developed for DNA/RNA analysis. The fluorescence-based biosensors have been applied in DNA/ RNA detection without the need for a dye-labeled target molecule or an intercalation reagent in the testing solution. Molecular beacons are hairpin-shaped oligonucleotides that report the presence of specific nucleic acids. We have designed a surface-immobilizable biotinylated ssDNA molecular beacon for DNA hybridization at a liquid-solid interface. The MBs have been immobilized onto ultrasmall optical fiber probes through avidin-biotin binding. The MB DNA biosensor has been used directly to detect, in real time, its target DNA molecules without the need for a competitive assay. The biosensor is stable and reproducible. The MB DNA biosensor has selectivity with single base-pair mismatch identification capability. The concentration detection limits and mass detection limits are 0.3 nM and 15 amol for a 105-microm biosensor, and 10 nM and 0.27 amol for a submicrometer biosensor, respectively. We have also prepared molecular beacon DNA biosensor arrays for simultaneous analysis of multiple DNA sequences in the same solution. The newly developed DNA biosensors have been used for the precise quantification of a specific rat gamma-actin mRNA sequence amplified by the polymerase chain reaction.  相似文献   

3.
The human olfactory systems recognize and discriminate a large number of different odorant molecules. The detection of chemically distinct odorants begins with the binding of an odorant ligand to a specific receptor protein in the ciliary membrane of olfactory neurons. To address the problem of olfactory perception at a molecular level, we have cloned, functionally expressed, and characterized some of the human olfactory receptors from chromosome 17. Our results show that a receptor protein is capable of recognizing the particular chemical substructure of an odor molecule and, therefore, is able to respond only to odorants that have a defined molecular structure. These findings represent the beginning of the molecular understanding of odorant recognition in humans. In the future, this knowledge could be used for the design of synthetic ideal receptors for specific odors (biosensors), or the perfect odor molecule for a given receptor.  相似文献   

4.
Nature takes advantage of the malleability of protein and RNA sequence and structure to employ these macromolecules as molecular reporters whose conformation and functional roles depend on the presence of a specific ligand (an "effector" molecule). By following nature's example, ligand-responsive proteins and RNA molecules are now routinely engineered and incorporated into customized molecular reporting systems (biosensors). Microbial small-molecule biosensors and endogenous molecular reporters based on these sensing components find a variety of applications that include high-throughput screening of biosynthesis libraries, environmental monitoring, and novel gene regulation in synthetic biology. Here, we review recent advances in engineering small-molecule recognition by proteins and RNA and in coupling in vivo ligand binding to reporter-gene expression or to allosteric activation of a protein conferring a detectable phenotype. Emphasis is placed on microbial screening systems that serve as molecular reporters and facilitate engineering the ligand-binding component to recognize new molecules.  相似文献   

5.
A novel approach for the label-free detection of molecular interactions is presented in which a colorimetric resonant grating is used as a surface binding platform. The grating, when illuminated with white light, is designed to reflect only a single wavelength. When molecules are attached to the surface, the reflected wavelength (color) is shifted due to the change of the optical path of light that is coupled into the grating. By linking receptor molecules to the grating surface, complementary binding molecules can be detected without the use of any kind of fluorescent probe or radioactive label. The detection technique is capable of detecting the addition and removal of small molecules as they interact with receptor molecules on the sensor surface or enzymes in the solution surrounding the sensor. Two assays are presented to exemplify the detection of small molecule interactions with the biosensor. First, an avidin receptor layer is used to detect 244 Da biotin binding. Second, a protease assay is performed in which a 136 Da p-nitroanilide (pNA) moeity is cleaved from an immobilized substrate. Because the sensor structure can be embedded in the plastic surfaces of microtiter plates or the glass surfaces of microarray slides, it is expected that this technology will be most useful in applications where large numbers of biomolecular interactions are measured in parallel, particularly when molecular labels will alter or inhibit the functionality of the molecules under study. Screening of pharmaceutical compound libraries with protein targets, and microarray screening of protein-protein interactions for proteomics are examples of applications that require the sensitivity and throughput afforded by this approach.  相似文献   

6.
Aptamers are good molecular recognition elements for biosensors. Especially, their conformational change, which is induced by the binding to the target molecule, enables the development of several types of useful detection systems. We applied this property to bound/free separation, which is a crucial process for highly sensitive detection. We designed aptamers which change their conformation upon binding to the target molecule and thereby expose a single-strand bearing the complementary sequence to the capture probe immobilized onto the support. We named the designed aptamers "capturable aptamers" and the capture probe "capture DNA". Three capturable aptamers were designed based on the PrP aptamer, which binds to prion protein. One of these capturable aptamers was demonstrated to recognize prion protein and change its conformation upon binding to it. A detection system using this designed capturable aptamer for prion protein was developed. Capturable aptamers and capture DNA allow us to perform simple bound/free separation with only one target ligand.  相似文献   

7.
Abstract

Benzothiazole derivatives represent an important class of therapeutic chemical agents and are widely used for interesting biological activities and therapeutic functions including anticancer, antitumor and antimicrobial. In this study, we have performed similarity/substructure-based search of eMolecule database to find out promising benzothiazole derivatives as EGFR tyrosine kinase inhibitors. Several screening criteria that included molecular docking, pharmacokinetics and synthetic accessibility were used on initially derived about 7000 molecules consisting of benzothiazole as major component. Finally, four molecules were found to be promising EGFR tyrosine kinase inhibitors. The best docked pose of each molecule was considered for binding interactions followed by molecular dynamics (MD) and binding energy calculation. Molecular docking clearly showed the final proposed derivatives potential to form a number of binding interactions. MD simulation trajectories undoubtedly indicated that the EGFR protein becomes stable when proposed derivatives bind to the receptor cavity. Strong binding affinity was found for all molecules toward the EGFR which was substantiated by the binding energy calculation using the MM-PBSA approach. Therefore, proposed benzothiazole derivatives may be promising EGFR tyrosine kinase inhibitors for potential application as cancer therapy.

Communicated by Ramaswamy H. Sarma  相似文献   

8.
There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser. The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.  相似文献   

9.

Surfaces of metallic films and metallic nanoparticles can strongly confine electromagnetic field through its coupling to propagating or localized surface plasmons. This interaction is associated with large enhancement of the field intensity and local optical density of states which provides means to increase excitation rate, raise quantum yield, and control far field angular distribution of fluorescence light emitted by organic dyes and quantum dots. Such emitters are commonly used as labels in assays for detection of chemical and biological species. Their interaction with surface plasmons allows amplifying fluorescence signal (brightness) that accompanies molecular binding events by several orders of magnitude. In conjunction with interfacial architectures for the specific capture of target analyte on a metallic surface, plasmon-enhanced fluorescence (PEF) that is also referred to as metal-enhanced fluorescence (MEF) represents an attractive method for shortening detection times and increasing sensitivity of various fluorescence-based analytical technologies. This review provides an introduction to fundamentals of PEF, illustrates current developments in design of metallic nanostructures for efficient fluorescence signal amplification that utilizes propagating and localized surface plasmons, and summarizes current implementations to biosensors for detection of trace amounts of biomarkers, toxins, and pathogens that are relevant to medical diagnostics and food control.

  相似文献   

10.
Detection of single DNA molecules by multicolor quantum-dot end-labeling   总被引:3,自引:0,他引:3  
Observation of DNA–protein interactions by single molecule fluorescence microscopy is usually performed by using fluorescent DNA binding agents. However, such dyes have been shown to induce cleavage of the DNA molecule and perturb its interactions with proteins. A new method for the detection of surface-attached DNA molecules by fluorescence microscopy is introduced in this paper. Biotin- and/or digoxigenin-modified DNA fragments are covalently linked at both extremities of a DNA molecule via sequence-specific hybridization and ligation. After the modified DNA molecules have been stretched on a glass surface, their ends are visualized by multicolor fluorescence microscopy using conjugated quantum dots (QD). We demonstrate that under carefully selected conditions, the position and orientation of individual DNA molecules can be inferred with good efficiency from the QD fluorescence signals alone. This is achieved by selecting QD pairs that have the distance and direction expected for the combed DNA molecules. Direct observation of single DNA molecules in the absence of DNA staining agent opens new possibilities in the fundamental study of DNA–protein interactions. This work also documents new possibilities regarding the use of QD for nucleic acid detection and analysis.  相似文献   

11.
Chicken liver bile acid binding protein (cL-BABP) crystallizes with water molecules in its binding site. To obtain insights on the role of internal water, we performed two 100 ns molecular dynamics (MD) simulations in explicit solvent for cL-BABP, as apo form and as a complex with two molecules of cholic acid, and analyzed in detail the dynamics properties of all water molecules. The diffusion coefficients of the more persistent internal water molecules are significantly different from the bulk, but similar between the two protein forms. A different number of molecules and a different organization are observed for apo- and holo-cL-BABP. Most water molecules identified in the binding site of the apo-crystal diffuse to the bulk during the simulation. In contrast, almost all the internal waters of the holo-crystal maintain the same interactions with internal sidechains and ligands, which suggests they have a relevant role in protein-ligand molecular recognition. Only in the presence of these water molecules we were able to reproduce, by a classical molecular docking approach, the structure of the complex cL-BABP::cholic acid with a low ligand root mean square deviation (RMSD) with respect to its reference positioning. Literature data reported a conserved pattern of hydrogen bonds between a single water molecule and three amino acid residues of the binding site in a series of crystallized FABP. In cL-BABP, the interactions between this conserved water molecule and the three residues are present in the crystal of both apo- and holo-cL-BABP but are lost immediately after the start of molecular dynamics. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

12.
GPI-linked protein molecules become Triton-insoluble during polarized sorting to the apical cell surface of epithelial cells. These insoluble complexes, enriched in cholesterol, glycolipids, and GPI-linked proteins, have been isolated by flotation on sucrose density gradients and are thought to contain the putative GPI-sorting machinery. As the cellular origin and molecular protein components of this complex remain unknown, we have begun to characterize these low-density insoluble complexes isolated from MDCK cells. We find that these complexes, which represent 0.4-0.8% of the plasma membrane, ultrastructurally resemble caveolae and are over 150-fold enriched in a model GPI-anchored protein and caveolin, a caveolar marker protein. However, they exclude many other plasma membrane associated molecules and organelle-specific marker enzymes, suggesting that they represent microdomains of the plasma membrane. In addition to caveolin, these insoluble complexes contain a subset of hydrophobic plasma membrane proteins and cytoplasmically-oriented signaling molecules, including: (a) GTP- binding proteins--both small and heterotrimeric; (b) annex II--an apical calcium-regulated phospholipid binding protein with a demonstrated role in exocytic fusion events; (c) c-Yes--an apically localized member of the Src family of non-receptor type protein- tyrosine kinases; and (d) an unidentified serine-kinase activity. As we demonstrate that caveolin is both a transmembrane molecule and a major phospho-acceptor component of these complexes, we propose that caveolin could function as a transmembrane adaptor molecule that couples luminal GPI-linked proteins with cytoplasmically oriented signaling molecules during GPI-membrane trafficking or GPI-mediated signal transduction events. In addition, our results have implications for understanding v- Src transformation and the actions of cholera and pertussis toxins on hetero-trimeric G proteins.  相似文献   

13.
Abstract

This report describes the results obtained with a new photo-affinity ligand for the “peripheral-type” benzodiazepine binding site (PBS), using a digitonin solubilized preparation from rat heart or adrenals.

The specific binding activity of the solubilized adrenal preparation is higher than 50 pmo1/mg protein, with binding proper-ties and pharmacological specificity identical to the membrane bound PBS. The apparent molecular weight of the solubilized PBS, determined by gel filtration is 215 KDa.

The photoaffinity ligand (PK 14105) is a nitrophenyl derivative of PK 11195, which attaches covalently and specifically to all the PBS when cardiac membranes are irradiated with this compound under ultraviolet light. After photolabelling with [3H]PK 14105 and solubilization in SDS of heart or adrenal membranes, gel electrophoresis indicates the existence of a single protein band whose molecular weight (18 KDa) is unaltered by incubation with sulphydryl-reducing or protein cross-linking agents. This molecule seems to be a low molecular weight, acidic protein.

Diethylpyrocarbonate decreases partially (60 %) the binding of [3H]PK 11195 without affecting [3H] RO5-4864 binding, which implies a vital histidine residue in the binding domain of [3H] -PK 11195. Treatment with phospholipase A2 or mellitin, a stimulant of endogenous PLA2, led to a selective, loss of [3H]RO5-4864 binding with no change in the binding of [3H]PK 11195.

Such differences between a benzodiazepine ligand and an isoquinoline ligand suggest that these compounds may induce.  相似文献   

14.
Inspired by the realisation of the ability of graphene nanoribbon (GNR) based sensors to detect individual gas molecules, analytical approach based on the nearest neighbour tight-binding approximation is proposed to study the effect of gas adsorption on GNR electrical properties. Numerical calculations indicate that the electrical properties of the GNR are completely dependent on the adsorbed gas. Conductance as one of the most important electrical parameters as a sensing parameter is considered and analytically modelled. Additionally, gas adsorption effect on the conductance variation in the form of current-voltage characteristics is investigated which points out that gas adsorption dramatically influences electrical conductance of the GNR. Furthermore, to support the proposed analytical models, simulation study is carried out to investigate adsorption of O2 and NH3 gas molecules on the GNR surface. While, the charge transfer phenomenon that occurred as a result of molecular doping of the GNR is explored and the roll of band structure changes by adsorbents and their effects on the conductance and I-V characteristics of the GNRFET sensor is analysed. The comparison study with adopted experimental results is presented; also the I-V characteristics obtained from analytical modelling compared with the first principle calculations and close agreement is observed.  相似文献   

15.
Sensitive electrochemical immunosensor for the detection of protein biomarker tumor necrosis factor α (TNF-α) was reported that uses ferrocene carboxylic acid (Fc) functionalized self-assembled peptide nanowire (Fc-PNW) as sensor platform and glucose oxidase (GOx) modified gold nanorod (GNR) as label. Greatly enhanced sensitivity is achieved based on a dual signal amplification strategy: first, the synthesized Fc-PNW used as the sensor platform increased the loading of primary anti-TNF-α antibody (Ab(1)) onto electrode surface due to its large surface area. At the same time, the Fc moiety on the nanowire is used as a mediator for GOx to catalyze the glucose reaction. Second, multiple GOx and secondary anti-TNF-α antibody (Ab(2)) molecules are bounded onto each GNR to increase the sensitivity of the immunosensor. After the preparation of the immunosensor based on the traditional sandwich protocol, the response of the immunosensor towards glucose was used as a signal to differentiate various concentrations of TNF-α. The resulting immunosensor has high sensitivity, wide linear range (0.005-10ng/mL) and good selectivity. This immunosensor preparation strategy is a promising platform for clinical screening of protein biomarkers.  相似文献   

16.
We have identified aptamers (synthetic oligonucleotides) binding to the very small molecule ethanolamine with high affinity down to the low nanomolar range. These aptamers were selected for their ability to bind to ethanolamine immobilised on magnetic beads, from an 96mer library of initially about 1 x 10(16) randomised ssDNA molecules. The dissociation constants of these aptamers range between K(D)=6 and K(D)=19 nmol L(-1). The aim of the development of ethanolamine aptamers is their use for the detection of this substance in clinical and environmental analysis. Ethanolamine is associated with several diseases. Moreover, ethanolamine and its derivatives di- and tri-ethanolamine are used in chemical and cosmetic industries. The use of biosensors with ethanolamine aptamer as new molecular recognition element could be an innovative method for an easy and fast detection of ethanolamine.  相似文献   

17.
Small magnetoresistive spin valve sensors (2 x 6 microm(2)) were used to detect the binding of single streptavidin functionalized 2 microm magnetic microspheres to a biotinylated sensor surface. The sensor signals, using 8 mA sense current, were in the order of 150-400 microV for a single microsphere depending on sensor sensitivity and the thickness of the passivation layer over the sensor surface. Sensor saturation signals were 1-2 mV representing an estimated 6-20 microspheres, with a noise level of approximately 10 microV. The detection of biomolecular recognition for the streptavidin-biotin model was shown using both single and differential sensor architectures. The signal data compares favourably with previously reported signals for high numbers of magnetic microspheres detected using larger multilayered giant magnetoresistance sensors. A wide range of applications is foreseen for this system in the development of biochips, high sensitivity biosensors and the detection of single molecules and single molecule interactions.  相似文献   

18.

Background

Conjugated polymers (CPs) have been used for creating bioimaging tools or biosensors that provide a direct link between spectral signal and different biological processes. The detection schemes of these sensors are mainly employing the efficient light harvesting properties or the conformation sensitive optical properties of the CPs. Hence, the presence of biomolecules or biological events can be detected through fluorescence resonance energy transfer (FRET) between the CP and an acceptor molecule, or through their impact on the conformation of the conjugated backbone, which is seen as an alteration of the optical properties of the CP.

Scope of the review

In this review, the utilization of CPs for sensitive detection of DNA and protein conformational changes will be presented. The main part will be focused on the specific binding of CPs to protein deposits associated with protein misfolding diseases, such as Alzheimer's disease (AD), and the discovery that tailor-made CPs can be used for in vivo optical imaging of protein aggregates will be discussed.

Major conclusions

The unique optical properties of CPs can be used as molecular tools for sensitive detection of genetic material and for characterization of the pathological hallmarks associated with protein misfolding disorders, such as AD.

General significance

CPs are novel molecular tools that can be used for sensitive bioimaging of biological processes and these tools offer the possibility to study biological events in a complementary fashion to conventional techniques.This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.  相似文献   

19.
We designed a rotary biosensor as a damping effector, with the rotation of the F0F1-ATPase driven by Adenosine Triphosphate (ATP) synthesis being indicated by the fluorescence intensity and a damping effect force being induced by the binding of an RNA molecule to its probe on the rotary biosensor. We found that the damping effect could contribute to the resonance phenomenon and energy transfer process of our rotary biosensor in the liquid phase. This result indicates that the ability of the rotary motor to operate in the vibration harmonic mode depends on the environmental conditions and mechanism in that a few molecules of the rotary biosensor could induce all of the sensor molecules to fluoresce together. These findings contribute to the theory study of the ATPase motor and future development of biosensors for ultrasensitive detection.  相似文献   

20.
Many environmental applications exist for biosensors capable of providing real-time analyses. One pressing current need is monitoring for agents of chemical- and bio-terrorism. These applications require systems that can rapidly detect small organics including nerve agents, toxic proteins, viruses, spores and whole microbes. A second area of application is monitoring for environmental pollutants. Processing of grab samples through chemical laboratories requires significant time delays in the analyses, preventing the rapid mapping and cleanup of chemical spills. The current state of development of miniaturized, integrated surface plasmon resonance (SPR) sensor elements has allowed for the development of inexpensive, portable biosensor systems capable of the simultaneous analysis of multiple analytes. Most of the detection protocols make use of antibodies immobilized on the sensor surface. The Spreeta 2000 SPR biosensor elements manufactured by Texas Instruments provide three channels for each sensor element in the system. A temperature-controlled two-element system that monitors for six analytes is currently in use, and development of an eight element sensor system capable of monitoring up to 24 different analytes will be completed in the near future. Protein toxins can be directly detected and quantified in the low picomolar range. Elimination of false positives and increased sensitivity is provided by secondary antibodies with specificity for different target epitopes, and by sensor element redundancy. Inclusion of more than a single amplification step can push the sensitivity of toxic protein detection to femtomolar levels. The same types of direct detection and amplification protocols are used to monitor for viruses and whole bacteria or spores. Special protocols are required for the detection of small molecules. Either a competition type assay where the presence of analyte inhibits the binding of antibodies to surface-immobilized analyte, or a displacement assay, where antibodies bound to analyte on the sensor surface are displaced by free analyte, can be used. The small molecule detection assays vary in sensitivity from the low micromolar range to the high picomolar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号