首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intercellular transport of viruses through cytoplasmic connections, termed plasmodesmata (PD), is essential for systemic infection in plants by viruses. Previous genetic and ultrastructural data revealed that the potyvirus cyclindrical inclusion (CI) protein is directly involved in cell-to-cell movement, likely through the formation of conical structures anchored to and extended through PD. In this study, we demonstrate that plasmodesmatal localization of CI in N. benthamiana leaf cells is modulated by the recently discovered potyviral protein, P3N-PIPO, in a CI:P3N-PIPO ratio-dependent manner. We show that P3N-PIPO is a PD-located protein that physically interacts with CI in planta. The early secretory pathway, rather than the actomyosin motility system, is required for the delivery of P3N-PIPO and CI to PD. Moreover, CI mutations that disrupt virus cell-to-cell movement compromise PD-localization capacity. These data suggest that the CI and P3N-PIPO complex coordinates the formation of PD-associated structures that facilitate the intercellular movement of potyviruses in infected plants.  相似文献   

2.
In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus.  相似文献   

3.
Phosphatidylinositol 4,5‐bisphosphate [PtdIns(4,5)P2] serves as a subcellular signal on the plasma membrane, mediating various cell‐polarized phenomena including polar cell growth. Here, we investigated the involvement of Arabidopsis thaliana PCaP2, a plant‐unique plasma membrane protein with phosphoinositide‐binding activity, in PtdIns(4,5)P2 signaling for root hair tip growth. The long‐root‐hair phenotype of the pcap2 knockdown mutant was found to stem from its higher average root hair elongation rate compared with the wild type and to counteract the low average rate caused by a defect in the PtdIns(4,5)P2‐producing enzyme gene PIP5K3. On the plasma membrane of elongating root hairs, the PCaP2 promoter‐driven PCaP2–green fluorescent protein (GFP), which complemented the pcap2 mutant phenotype, overlapped with the PtdIns(4,5)P2 marker 2xCHERRY‐2xPHPLC in the subapical region, but not at the apex, suggesting that PCaP2 attenuates root hair elongation via PtdIns(4,5)P2 signaling on the subapical plasma membrane. Consistent with this, a GFP fusion with the PCaP2 phosphoinositide‐binding domain PCaP2N23, root hair‐specific overexpression of which caused a low average root hair elongation rate, localized more intense to the subapical plasma membrane than to the apical plasma membrane similar to PCaP2–GFP. Inducibly overexpressed PCaP2–GFP, but not its derivative lacking the PCaP2N23 domain, replaced 2xCHERRY‐2xPHPLC on the plasma membrane in root meristematic epidermal cells, and suppressed FM4‐64 internalization in elongating root hairs. Moreover, inducibly overexpressed PCaP2 arrested an endocytic process of PIN2–GFP recycling. Based on these results, we conclude that PCaP2 functions as a negative modulator of PtdIns(4,5)P2 signaling on the subapical plasma membrane probably through competitive binding to PtdIns(4,5)P2 and attenuates root hair elongation.  相似文献   

4.
5.
The tobacco mosaic virus (TMV) movement protein (MP) required for the cell-to-cell spread of viral RNA interacts with the endoplasmic reticulum (ER) as well as with the cytoskeleton during infection. Whereas associations of MP with ER and microtubules have been intensely investigated, research on the role of actin has been rather scarce. We demonstrate that Nicotiana benthamiana plants transgenic for the actin-binding domain 2 of Arabidopsis (Arabidopsis thaliana) fimbrin (AtFIM1) fused to green fluorescent protein (ABD2:GFP) exhibit a dynamic ABD2:GFP-labeled actin cytoskeleton and myosin-dependent Golgi trafficking. These plants also support the movement of TMV. In contrast, both myosin-dependent Golgi trafficking and TMV movement are dominantly inhibited when ABD2:GFP is expressed transiently. Inhibition is mediated through binding of ABD2:GFP to actin filaments, since TMV movement is restored upon disruption of the ABD2:GFP-labeled actin network with latrunculin B. Latrunculin B shows no significant effect on the spread of TMV infection in either wild-type plants or ABD2:GFP transgenic plants under our treatment conditions. We did not observe any binding of MP along the length of actin filaments. Collectively, these observations demonstrate that TMV movement does not require an intact actomyosin system. Nevertheless, actin-binding proteins appear to have the potential to exert control over TMV movement through the inhibition of myosin-associated protein trafficking along the ER membrane.  相似文献   

6.
The intercellular movement of plant viruses requires both viral and host proteins. Previous studies have demonstrated that the frame-shift protein P3N-PIPO (for the protein encoded by the open reading frame [ORF] containing 5′-terminus of P3 and a +2 frame-shift ORF called Pretty Interesting Potyviridae ORF and embedded in the P3) and CYLINDRICAL INCLUSION (CI) proteins were required for potyvirus cell-to-cell movement. Here, we provide genetic evidence showing that a Tobacco vein banding mosaic virus (TVBMV; genus Potyvirus) mutant carrying a truncated PIPO domain of 58 amino acid residues could move between cells and induce systemic infection in Nicotiana benthamiana plants; mutants carrying a PIPO domain of seven, 20, or 43 amino acid residues failed to move between cells and cause systemic infection in this host plant. Interestingly, the movement-defective mutants produced progeny that eliminated the previously introduced stop codons and thus restored their systemic movement ability. We also present evidence showing that a developmentally regulated plasma membrane protein of N. benthamiana (referred to as NbDREPP) interacted with both P3N-PIPO and CI of the movement-competent TVBMV. The knockdown of NbDREPP gene expression in N. benthamiana impeded the cell-to-cell movement of TVBMV. NbDREPP was shown to colocalize with TVBMV P3N-PIPO and CI at plasmodesmata (PD) and traffic to PD via the early secretory pathway and the actomyosin motility system. We also show that myosin XI-2 is specially required for transporting NbDREPP to PD. In conclusion, NbDREPP is a key host protein within the early secretory pathway and the actomyosin motility system that interacts with two movement proteins and influences virus movement.The movement of viruses in plants can be divided into three stages: intracellular, intercellular, and long-distance movement (Nelson and Citovsky, 2005; Benitez-Alfonso et al., 2010). Plasmodesmata (PD) are plasma membrane-mediated channels in cell walls that control the intercellular trafficking of micromolecules and macromolecules, including plant viruses (Boevink and Oparka, 2005; Lucas et al., 2009). Plant viruses encode movement proteins (MPs) that can regulate the size exclusion limit (SEL) of PD and mediate virus trafficking between cells (Lucas, 2006; Raffaele et al., 2009; Amari et al., 2010; Ueki et al., 2010). Based on the functions of MPs during virus movement, the viral MPs are divided into three major groups. The first group of MPs is represented by the 30-kD protein of Tobacco mosaic virus (TMV). The 30-kD proteins can interact with single-stranded RNAs and transport viral ribonucleoprotein complexes to cell walls, where they modify the SEL of PD to allow viruses to traverse the cell walls (Olesinski et al., 1996; Tzfira et al., 2000; Kawakami et al., 2004). The second group of MPs is known to form tubular structures that extend across the PD and allow virus to traverse. Viruses that encode this group of MPs include Cowpea mosaic virus, Grapevine fan leaf virus (GFLV), Cauliflower mosaic virus, and Tomato spotted wilt virus (Ritzenthaler and Hofmann, 2007; Amari et al., 2011). The third group of MPs is known as triple gene block proteins (TGBps), encoded by overlapping triple gene blocks. The three TGBps (TGBp1, TGBp2, and TGBp3) function coordinately to transport viral genomes to and through PD (Verchot-Lubicz, 2005; Jackson et al., 2009; Lim et al., 2009; Tilsner et al., 2013). Viruses that encode TGBps belong to the genera Potexvirus, Hordeivirus, and Pomovirus (Verchot-Lubicz et al., 2010). Potyviruses are different from the above viruses and lack a dedicated MP. To date, multiple potyviral proteins, including COAT PROTEIN, CYLINDRICAL INCLUSION (CI), HELPER COMPONENT PROTEINASE (HC-Pro), and VIRAL GENOME-LINKED PROTEIN, have been shown to function in the cell-to-cell movement of potyviruses (Nicolas et al., 1997; Rojas et al., 1997; Carrington et al., 1998; Wei et al., 2010).Viruses of Potyvirus (family Potyviridae), the largest genus of plant-infecting viruses, cause great economic losses to world agriculture production (Fauquet et al., 2005). The potyviral genome is a positive sense, single-stranded RNA of approximately 10 kb in length. It contains a large open reading frame (ORF) encoding a polyprotein that is later processed into 10 mature proteins by three virus-encoded proteinases (Riechmann et al., 1992; Fauquet et al., 2005). A +2 frame-shift Pretty Interesting Potyviridae (PIPO) ORF that is embedded within the P3 ORF was recently identified and proposed to produce a P3N-PIPO (for the protein encoded by 5′-terminus of P3 and frame-shift PIPO) fusion (Chung et al., 2008; Vijayapalani et al., 2012). The P3N-PIPOs of Turnip mosaic virus (TuMV) and Tobacco etch virus were previously shown to localize at PD, interact with CI in planta, and transport CI to PD in a CI:P3N-PIPO ratio-dependent manner (Wei et al., 2010). Soybean mosaic virus with a mutant PIPO domain failed to cause systemic infection in its host plant (Wen and Hajimorad, 2010). Therefore, the potyvirus P3N-PIPO has been suggested as the classical MP (Tilsner and Oparka, 2012; Vijayapalani et al., 2012).Viruses recruit host factors for their movement in plants (Chen et al., 2000; Raffaele et al., 2009; Amari et al., 2010; Ueki et al., 2010). Compared with the progresses on viral MP characterization, identifications of MP-interacting host proteins are much behind (Chen et al., 2000; Oparka, 2004; Raffaele et al., 2009; Amari et al., 2010). To date, about 20 host proteins have been identified to interact with specific viral MPs (Pallas and García, 2011). For example, the pectin methylesterase interacted with TMV MP, increased the SEL of PD, and facilitated TMV movement between cells (Chen et al., 2000); an ankyrin repeat-containing protein (ANK) interacted with TMV MP at PD, down-regulated callose formation, and aided viral movement (Ueki et al., 2010); the Arabidopsis (Arabidopsis thaliana) PLASMODESMATA-LOCALIZED PROTEIN1 (AtPDLP1) was reported to interact with GFLV MP and mediate tubule assembly during GFLV cell-to-cell movement in plants (Amari et al., 2010, 2011). TuMV P3N-PIPO was shown to interact with AtPCaP1, a plasma membrane cation-binding protein of Arabidopsis, and colocalize with this host protein at the PD. Knockout of AtPCaP1 expression resulted in a significant reduction of TuMV infection in Arabidopsis (Vijayapalani et al., 2012).Many viral MPs have been shown to traffic within plant cells via the early secretory pathway and/or along the actin filaments or microtubules. For example, the early secretory pathway and microtubules were required for GFLV MP trafficking to PD (Laporte et al., 2003). TuMV P3N-PIPO and CI were reported to utilize the early secretory pathway rather than the actomyosin motility system for their trafficking to PD (Wei et al., 2010). Several plant myosin motor proteins have been reported to participate in virus intracellular movement (Wei and Wang, 2008; Harries et al., 2010). Myosins VIII-1, VIII-2, and VIII-B were shown to transport a HEAT SHOCK PROTEIN70 homolog of Beet yellows virus to PD (Avisar et al., 2008a), but only myosin VIII-1 was needed for the nonstructural protein encoded by viral complementary strand of RNA4 (NSvc4) of Rice stripe virus traffic to PD (Yuan et al., 2011). A more recent study has indicated that both the secretory pathway and myosins XI-2 and XI-K were required for TuMV cell-to-cell movement (Agbeci et al., 2013). However, it remains largely unknown how the MP-interacting host factor(s) reach their target sites in cells.Tobacco vein banding mosaic virus (TVBMV) is a distinct potyvirus mainly infecting solanaceous crops (Tian et al., 2007; Yu et al., 2007; Zhang et al., 2011). In this article, we provide evidence showing the length requirements of the PIPO domains for its function in mediating TVBMV movement and the restoration of the movement-defective TVBMV mutants. We also show the interactions between TVBMV P3N-PIPO and CI and NbDREPP, a developmentally regulated plasma membrane protein in Nicotiana benthamiana, and the route by which NbDREPP traffics to PD. Silencing of NbDREPP expression in N. benthamiana significantly impeded the cell-to-cell movement of TVBMV.  相似文献   

7.
8.
Plasma membrane‐associated Ca2+‐binding protein–2 (PCaP2) of Arabidopsis thaliana is a novel‐type protein that binds to the Ca2+/calmodulin complex and phosphatidylinositol phosphates (PtdInsPs) as well as free Ca2+. Although the PCaP2 gene is predominantly expressed in root hair cells, it remains unknown how PCaP2 functions in root hair cells via binding to ligands. From biochemical analyses using purified PCaP2 and its variants, we found that the N–terminal basic domain with 23 amino acids (N23) is necessary and sufficient for binding to PtdInsPs and the Ca2+/calmodulin complex, and that the residual domain of PCaP2 binds to free Ca2+. In mutant analysis, a pcap2 knockdown line displayed longer root hairs than the wild‐type. To examine the function of each domain in root hair cells, we over‐expressed PCaP2 and its variants using the root hair cell‐specific EXPANSIN A7 promoter. Transgenic lines over‐expressing PCaP2, PCaP2G2A (second glycine substituted by alanine) and ?23PCaP2 (lacking the N23 domain) exhibited abnormal branched and bulbous root hair cells, while over‐expression of the N23 domain suppressed root hair emergence and elongation. The N23 domain was necessary and sufficient for the plasma membrane localization of GFP‐tagged PCaP2. These results suggest that the N23 domain of PCaP2 negatively regulates root hair tip growth via processing Ca2+ and PtdInsP signals on the plasma membrane, while the residual domain is involved in the polarization of cell expansion.  相似文献   

9.
Two different isolates of Turnip mosaic virus (TuMV: UK 1 and JPN 1) belonging to different virus strains were tested on three different Brassica species, namely turnip (Brassica rapa L.), Indian mustard (Brassica juncea L.) and Ethiopian mustard (Brassica carinata A. Braun). Although all three hosts were readily infected by isolate UK 1, isolate JPN 1 was able to establish a visible systemic infection only in the first two. Ethiopian mustard plants showed no local or systemic symptoms, and no virus antigens could be detected by enzyme‐linked immunosorbent assay (ELISA). Thus, this species looks like a non‐host for JPN 1, an apparent situation of non‐host resistance (NHR). Through an experimental approach involving chimeric viruses made by gene interchange between two infectious clones of both virus isolates, the genomic region encoding the C‐terminal domain of viral protein P3 was found to bear the resistance determinant, excluding any involvement of the viral fusion proteins P3N‐PIPO and P3N‐ALT in the resistance. A further determinant refinement identified two adjacent positions (1099 and 1100 of the viral polyprotein) as the main determinants of resistance. Green fluorescent protein (GFP)‐tagged viruses showed that the resistance of Ethiopian mustard to isolate JPN 1 is only apparent, as virus‐induced fluorescence could be found in discrete areas of both inoculated and non‐inoculated leaves. In comparison with other plant–virus combinations of extreme resistance, we propose that Ethiopian mustard shows an apparent NHR to TuMV JPN 1, but not complete immunity or extreme resistance.  相似文献   

10.
Tomato spotted wilt virus (TSWV) is one of the most devastating plant viruses and often causes severe crop losses worldwide. Generally, mature plants become more resistant to pathogens, known as adult plant resistance. In this study, we demonstrated a new phenomenon involving developmentally regulated susceptibility of Arabidopsis thaliana to TSWV. We found that Arabidopsis plants become more susceptible to TSWV as plants mature. Most young 3-week-old Arabidopsis were not infected by TSWV. Infection of TSWV in 4-, 5-, and 6-week-old Arabidopsis increased from 9%, 21%, and 25%, respectively, to 100% in 7- to 8-week-old Arabidopsis plants. Different isolates of TSWV and different tospoviruses show a low rate of infection in young Arabidopsis but a high rate in mature plants. When Arabidopsis dcl2/3/4 or rdr1/2/6 mutant plants were inoculated with TSWV, similar results as observed for the wild-type Arabidopsis plants were obtained. A cell-to-cell movement assay showed that the intercellular movement efficiency of TSWV NSm:GFP fusion was significantly higher in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves. Moreover, the expression levels of pectin methylesterase and β-1,3-glucanase, which play critical roles in macromolecule cell-to-cell trafficking, were significantly up-regulated in 8-week-old Arabidopsis leaves compared with 4-week-old Arabidopsis leaves during TSWV infection. To date, this mature plant susceptibility to pathogen infections has rarely been investigated. Thus, the findings presented here should advance our knowledge on the developmentally regulated mature host susceptibility to plant virus infection.  相似文献   

11.
Plasmodesmata (PD), unique to the plant kingdom, are structurally complex microchannels that cross the cell wall to establish symplastic communication between neighbouring cells. Viral intercellular movement occurs through PD. To better understand the involvement of PD in viral infection, we conducted a quantitative proteomic study on the PD‐enriched fraction from Nicotiana benthamiana leaves in response to infection by Turnip mosaic virus (TuMV). We report the identification of a total of 1070 PD protein candidates, of which 100 (≥2‐fold increase) and 48 (≥2‐fold reduction) are significantly differentially accumulated in the PD‐enriched fraction, when compared with protein levels in the corresponding healthy control. Among the differentially accumulated PD protein candidates, we show that an α‐expansin designated NbEXPA1, a cell wall loosening protein, is PD‐specific. TuMV infection downregulates NbEXPA1 mRNA expression and protein accumulation. We further demonstrate that NbEXPA1 is recruited to the viral replication complex via the interaction with NIb, the only RNA‐dependent RNA polymerase of TuMV. Silencing of NbEXPA1 inhibits plant growth and TuMV infection, whereas overexpression of NbEXPA1 promotes viral replication and intercellular movement. These data suggest that NbEXPA1 is a host factor for potyviral infection. This study not only generates a PD‐proteome dataset that is useful in future studies to expound PD biology and PD‐mediated virus–host interactions but also characterizes NbEXPA1 as the first PD‐specific cell wall loosening protein and its essential role in potyviral infection.  相似文献   

12.
In plants, Ca2+, phosphatidylinositol phosphates (PtdInsPs) and inositol phosphates are major components of intracellular signaling. Several kinds of proteins and enzymes, such as calmodulin (CaM), protein kinase, protein phosphatase, and the Ca2+ channel, mediate the signaling. Two new Ca2+-binding proteins were identified from Arabidopsis thaliana and named PCaP1 and PCaP2 [plasma membrane (PM)-associated Ca2+(cation)-binding protein 1 and 2]. PCaP1 has an intrinsically disordered region in the central and C-terminal parts. The PCaP1 gene is expressed in most tissues and the PCaP2 gene is expressed predominantly in root hairs and pollen tubes. We recently demonstrated that these proteins are N-myristoylated, stably anchored in the PM, and are bound with phosphatidylinositol phosphates, especially PtdInsP2s. Here we propose a model for the switching mechanism of Ca2+-signaling mediated by PtdInsPs. Ca2+ forms a complex with CaM (Ca2+-CaM) when there is an increase in the cytosol free Ca2+. The binding of PCaPs with Ca2+-CaM causes PCaPs to release PtdInsPs. Until the release of PtdInsPs, the signaling is kept in the resting state.Key words: calcium signal, calmodulin, inositol phosphate, intrinsically disordered protein, myristoylation, phosphatidylinositol phosphate, plasma membrane  相似文献   

13.
This study demonstrates that heat shock protein 70 (HSP70) together with its cochaperone CPIP regulates the function of a potyviral coat protein (CP), which in turn can interfere with viral gene expression. HSP70 was copurified as a component of a membrane-associated viral ribonucleoprotein complex from Potato virus A–infected plants. Downregulation of HSP70 caused a CP-mediated defect associated with replication. When PVA CP was expressed in trans, it interfered with viral gene expression and replication-associated translation (RAT). However, CP produced in cis interfered specifically with RAT. CPIP binds to potyviral CP, and overexpression of CPIP was sufficient to restore RAT inhibited by expression of CP in trans. Restoration of RAT was dependent on the ability of CPIP to interact with HSP70 since expression of a J-domain mutant, CPIPΔ66, had only a minor effect on RAT. CPIP-mediated delivery of CP to HSP70 promoted CP degradation by increasing its ubiquitination when assayed in the absence of virus infection. In conclusion, CPIP and HSP70 are crucial components of a distinct translation activity that is associated with potyvirus replication.  相似文献   

14.
Plasmodesmata mediate direct cell-to-cell communication in plants. One of their significant features is that primary plasmodesmata formed at the time of cytokinesis often undergo structural modifications, by the de novo addition of cytoplasmic strands across cell walls, to become complex secondary plasmodesmata during plant development. Whether such modifications allow plasmodesmata to gain special transport functions has been an outstanding issue in plant biology. Here we present data showing that the cucumber mosaic virus 3a movement protein (MP):green fluorescent protein (GFP) fusion was not targeted to primary plasmodesmata in the epidermis of young or mature leaves in transgenic tobacco (Nicotiana tabacum) plants constitutively expressing the 3a:GFP fusion gene. Furthermore, the cucumber mosaic virus 3a MP:GFP fusion protein produced in planta by biolistic bombardment of the 3a:GFP fusion gene did not traffic between cells interconnected by primary plasmodesmata in the epidermis of a young leaf. In contrast, the 3a MP:GFP was targeted to complex secondary plasmodesmata and trafficked from cell to cell when a leaf reached a certain developmental stage. These data provide the first experimental evidence, to our knowledge, that primary and complex secondary plasmodesmata have different protein-trafficking functions and suggest that complex secondary plasmodesmata may be formed to traffic specific macromolecules that are important for certain stages of leaf development.  相似文献   

15.
Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the ∼170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T–DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS–LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1–mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a.  相似文献   

16.
17.
Maize and Arabidopsis thaliana class 1 reversibly glycosylated polypeptides (C1RGPs) are plasmodesmata-associated proteins. Previously, overexpression of Arabidopsis C1RGP AtRGP2 in Nicotiana tabacum was shown to reduce intercellular transport of photoassimilate, resulting in stunted, chlorotic plants, and inhibition of local cell-to-cell spread of tobacco mosaic virus (TMV). Here, we used virus induced gene silencing to examine the effects of reduced levels of C1RGPs in Nicotiana benthamiana. Silenced plants show wild-type growth and development. Intercellular transport in silenced plants was probed using fluorescently labeled TMV and its movement protein, P30. P30 shows increased cell-to-cell movement and TMV exhibited accelerated systemic spread compared with control plants. These results support the hypothesis that C1RGPs act to regulate intercellular transport via plasmodesmata.  相似文献   

18.
Validating interactions between different proteins is vital for investigation of their biological functions on the molecular level. There are several methods, both in vitro and in vivo, to evaluate protein binding, and at least two methods that complement the shortcomings of each other should be conducted to obtain reliable insights. For an in vivo assay, the bimolecular fluorescence complementation (BiFC) assay represents the most popular and least invasive approach that enables to detect protein-protein interaction within living cells, as well as identify the intracellular localization of the interacting proteins 1,2. In this assay, non-fluorescent N- and C-terminal halves of GFP or its variants are fused to tested proteins, and when the two fusion proteins are brought together due to the tested proteins’ interactions, the fluorescent signal is reconstituted3-6. Because its signal is readily detectable by epifluorescence or confocal microscopy, BiFC has emerged as a powerful tool of choice among cell biologists for studying about protein-protein interactions in living cells 3. This assay, however, can sometimes produce false positive results. For example, the fluorescent signal can be reconstituted by two GFP fragments arranged as far as 7 nm from each other due to close packing in a small subcellular compartment, rather that due to specific interactions7.Due to these limitations, the results obtained from live cell imaging technologies should be confirmed by an independent approach based on a different principle for detecting protein interactions. Co-immunoprecipitation (Co-IP) or glutathione transferase (GST) pull-down assays represent such alternative methods that are commonly used to analyze protein-protein interactions in vitro. However, iIn these assays, however, the tested proteins must be readily soluble in the buffer that supportsused for the binding reaction. Therefore, specific interactions involving an insoluble protein cannot be assessed by these techniques. Here, we illustrate the protocol for the protein membrane overlay binding assay, which circumvents this difficulty. In this technique, interaction between soluble and insoluble proteins can be reliably tested because one of the proteins is immobilized on a membrane matrix. This method, in combination with in vivo experiments, such as BiFC, provides a reliable approach to investigate and characterize interactions faithfully between soluble and insoluble proteins. In this article, binding between Tobacco mosaic virus (TMV) movement protein (MP), which exerts multiple functions during viral cell-to-cell transport8-14, and a recently identified plant cellular interactor, tobacco ankyrin repeat-containing protein (ANK) 15, is demonstrated using this technique.Download video file.(54M, mov)  相似文献   

19.
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A 116KSKRKKKNKK125 and B 175KKATKKESKKQTK187 reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein–protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.  相似文献   

20.
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1–97), the core (amino acids 98–245), and the C-terminus (amino acids 246–288). We found that deletion of CP or its segments amino acids 51–199, amino acids 200–283, or amino acids 265–274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6–50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号