首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1mg/kg per day for 1, 7 and 14 days), methapyrilene (100mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and (3) develop hypotheses regarding mechanisms of toxicity.  相似文献   

2.
The mechanisms by which acute administration of methapyrilene, an H(1)-receptor antihistamine causes periportal necrosis to rats are unknown. This study investigated the role of the hepato-biliary system in methapyrilene hepatotoxicity following daily administration of 150 mg/kg per day over 3 consecutive days. Biliary metabolites of methapyrilene were tentatively identified. In male Han Wistar rats administration of methapyrilene significantly increased hepatic reduced glutathione (GSH) to 140% of control levels 24 h following the last dose. There were no significant changes in the activities of glutathione-related enzymes, glutathione peroxidase (GPx) and reductase (GSH), glutathione S-transferase (GST), and gamma-glutamyl cysteine synthetase (gamma-GCS) over 3 days of methapyrilene administration. Methapyrilene treatment resulted in no significant increase in excretion of biliary oxidized glutathione (GSSG), a sensitive marker of oxidative stress in vivo, following the third dose. [3H]Methapyrilene-derived radioactivity was detected in bile, to a greater extent than in feces, indicating that methapyrilene and/or metabolites underwent enterohepatic recirculation. Cannulation and exteriorization of the bile duct (to interrupt enterohepatic recirculation) afforded some protection against the hepatotoxicity, assessed by clinical chemistry and histopathology. Liquid chromatography-mass spectrometry (LC-MS) analysis of bile indicated the presence of unmetabolized methapyrilene, methapyrilene O-glucuronide and desmethyl methapyrilene O-glucuronide. These data demonstrate that acute methapyrilene hepatotoxicity in vivo is not a consequence of GSH depletion, or oxidative stress, but that enterohepatic recirculation of biliary metabolites may be important. Progressive exposure to non-oxidizing, reactive metabolic intermediates may be responsible for hepatotoxicity.  相似文献   

3.
Benzene is an industrial chemical, component of automobile exhaust and cigarette smoke. After hepatic bioactivation benzene induces bone marrow, blood and hepatic toxicity. Using a toxicogenomics approach this study analysed the effects of benzene at three dose levels on gene expression in the liver after 28 daily doses. NMR based metabolomics was used to assess benzene exposure by identification of characteristic benzene metabolite profiles in urine. The 28-day oral exposure to 200 and 800 mg/kg/day but not 10 mg/kg/day benzene-induced hematotoxicity in male Fisher rats. Additionally these upper dose levels slightly reduced body weight and increased relative liver weights. Changes in hepatic gene expression were identified with oligonucleotide microarrays at all dose levels including the 10 mg/kg/day dose level where no toxicity was detected by other methods. The benzene-induced gene expression changes were related to pathways of biotransformation, glutathione synthesis, fatty acid and cholesterol metabolism and others. Some of the effects on gene expression observed here have previously been observed after induction of acute hepatic necrosis with bromobenzene and acetaminophen. In conclusion, changes in hepatic gene expression were found after treatment with benzene both at the toxic and non-toxic doses. The results from this study show that toxicogenomics identified hepatic effects of benzene exposure possibly related to toxicity. The findings aid to interpret the relevance of hepatic gene expression changes in response to exposure to xenobiotics. In addition, the results have the potential to inform on the mechanisms of response to benzene exposure.  相似文献   

4.
Application of recently developed gene expression techniques using microarrays in toxicological studies (toxicogenomics) facilitate the interpretation of a toxic compound's mode of action and may also allow the prediction of selected toxic effects based on gene expression changes. In order to test this hypothesis, we investigated whether carcinogens at doses known to induce liver tumors in the 2-year rat bioassay deregulate characteristic sets of genes in a short term in vivo study and whether these deregulated genes represent defined biological pathways. Male Wistar rats were dosed with the four nongenotoxic hepatocarcinogens methapyrilene (MPy, 60 mg/kg/day), diethylstilbestrol (DES, 10 mg/kg/day), Wy-14643 (Wy, 60 mg/kg/day), and piperonylbutoxide (PBO, 1200 mg/kg/day). After 1, 3, 7, and 14 days, the livers were taken for histopathological evaluation and for analysis of the gene expression profiles on Affymetrix RG_U34A arrays. The expression profile of the four nongenotoxic carcinogens were compared to the profiles of the four genotoxic carcinogens 2-nitrofluorene (2-NF), dimethylnitrosamine (DMN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and aflatoxin B1 (AB1) from a similar study reported previously. By using statistical and clustering tools characteristically deregulated genes were extracted and functionally classified. Distinct cellular pathways were affected by the nongenotoxic carcinogens compared to the genotoxic carcinogens which at least partly correlated with the two-stage model of carcinogenesis. Characteristic to genotoxic carcinogens were a DNA damage response and the activation of proliferative and survival signaling. Nongenotoxic carcinogens showed responses to oxidative DNA or protein damage, as well as cell cycle progression and signs of regeneration. Many of the gene alterations found with the nongenotoxic carcinogens imply compound-specific mechanisms. Although neither a single gene nor a single pathway will be sufficient to discriminate the two classes of carcinogens, it became evident that combinations of pathway-associated gene expression profiles may be used to predict a genotoxic or nongenotoxic carcinogenic potential of a compound in short-term studies.  相似文献   

5.
The possibility was examined that the induction of tumors in rat liver by feeding methapyrilene, which is not mutagenic, is related to effects on glutathione levels and lipid peroxidation. Fischer 344 rats were given single-dose and multiple-dose treatments with the anti-histamine methapyrilene (MP), which is carcinogenic in rats, and with two non-carcinogenic analogs, methafurylene (MF) and thenyldiamine (TD) and the effects on malonaldehyde (MDA) formation and glutathione (GSH) levels in the liver were investigated. After a single dose, MDA levels were increased at 6 h by MF and TD and at 24 h by MP. MDA levels returned to normal after 30 h with MP and MF, but not with TD. Levels of MDA (and other TBA-reactive products) after four daily treatments were most elevated by TD, less elevated by MP, and were lowered by MF. Forty-two hours following treatment with both MP and MF, MDA levels had returned to normal, but in TD-treated animals MDA remained high. GSH levels were highest after MF and MP, and remained high at 42 h, but TD induced only a small increase. There appears to be increased lipid peroxidation in the liver as a result of treatment of rats with MP, MF and TD. The greater response induced by TD, as well as the increased liver GSH levels after repeated administration of all three drugs indicate that lipid peroxidation in rat liver is not a particular effect related to the liver carcinogen methapyrilene.  相似文献   

6.
Degenerative and regenerative changes induced in rat liver by single exposure to diethylnitrosamine (DEN) were examined by morphological and biochemical approaches. Apoptotic changes were observed in livers of rats exposed to a 'subnecrogenic' dose of DEN (10 mg/kg) as well as in liver parenchyma of those receiving a necrogenic dose (100 mg/kg). Zonal centrilobular necrosis was observed exclusively in the latter group. Regenerative changes, i.e., increases in DNA synthesis, labeling index and mitotic activity, occurred only in animals exposed to the higher dose. The mitogenic effect obtained in these conditions was about half that induced by two-thirds hepatectomy and the maximum response occurred about 24 h later than in partially hepatectomized rats.  相似文献   

7.
The effects of adrenalectomy and dehydroepiandrosterone (DHEA) doses (0, 15, 30, 60, 120 and 240 mg/kg/day ip) on hepatic enzyme activity and lipid content and on the amount of epididymal fat pad lipid were studied in starved-refed BHE and Sprague-Dawley rats. BHE rats had significantly greater relative liver size, glucose-6-phosphate dehydrogenase (G6PD) and malic enzyme (ME) activities, and percentage liver lipid but less epididymal fat pad lipid than Sprague-Dawley rats. Adrenalectomized (ADX) rats consumed significantly less food, gained less weight per day, and had less lipid in their livers and fat pads than intact rats. As the level of DHEA increased from 0 to 240 mg/kg/day there was a significant linear decrease in average daily weight gain, food intake, G6PD activity, and percentage liver lipid. At the 15 mg/kg/day dose, G6PD activity was significantly reduced without reductions in the other parameters measured. At the 120 mg/kg/day dose, however, weight gain, food intake, G6PD activity, and percentage liver lipid were significantly lower than that of the controls. At this dose DHEA treatment reduced food intake by 17% whereas it diminished average daily weight gain and G6PD activity by 30 and 56%, respectively. The 240 mg/kg/day dose of DHEA significantly reduced food intake, weight gain, liver lipid, G6PD activity, and ME activity. Intact and ADX BHE rats reduced their G6PD activity and liver lipid more rapidly than Sprague-Dawley rats as the level of DHEA administered increased. ADX Sprague-Dawley rats receiving DHEA had greater liver lipid content and enzyme activity than their intact counterparts whereas the reverse situation was true in BHE rats. These data indicate that the effect of DHEA on body weight gain, food intake, and hepatic and peripheral adiposity are dependent on the strain of rat, the adrenal status, and the DHEA dose.  相似文献   

8.
The ability of phenobarbital to induce the expression and activity of microsomal drug monooxygenases in the liver presents one of the most important issues in the field of chemical interactions and in the toxicity of xenobiotics. The model of rat liver injury induced by a single dose of thioacetamide (500 mg/kg intraperitoneally) was used to study the effect of phenobarbital (80 mg/kg/day intraperitoneally) for 5 days prior to thioacetamide. Serum parameters of liver injury such as aspartate aminotransferase activity, gamma-glutamyl transferase activity and the total bilirubin levels, as well as the activities of hepatic FAD and cytochrome P450 microsomal monooxygenases, were assayed in 2- and 12-month-old rats. Samples of blood and liver were obtained from controls (injected at 0 h with 0.5 ml of 0.9% NaCl) and at 12, 24, 48, 72 and 96 h of thioacetamide intoxication either to non-treated or phenobarbital pretreated rats. Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment was demonstrated at morphological level, and by significant increases in the activities of serum aspartate aminotransferase and gamma-glutamyl transferase, and in the levels of total bilirubin. The extent of potentiation of thioacetamide-induced liver injury by phenobarbital pretreatment was similar in both age groups. Microsomal FAD monooxygenase activity, the enzyme responsible for thioacetamide biotransformation, was significantly enhanced (twofold) by phenobarbital pretreatment, and also underwent a further increase following thioacetamide, preceding the peak of necrosis. Cytochrome P450 monooxygenases were induced by phenobarbital pretreatment more than sixfold, and sharply decreased when phenobarbital was withdrawn and thioacetamide administered, showing at 48 h intoxication values close to basal. Phenobarbital pretreatment potentiated thioacetamide necrogenicity, and this potentiation was parallel to the induction of the microsomal FAD monooxygenase system, both by phenobarbital and by thioacetamide itself. The extent of thioacetamide-induced liver injury was significantly higher in 12-month-old rats, but the effect of phenobarbital pretreatment was similar in both age groups.  相似文献   

9.
(1) Two procedures have been used to change the glutathione concentration in the livers of male rats. The glutathione level is increased to about double that of the controls, 0.5 h after the administration of cysteine (200 mg/kg, i.p.) and to about 25% that of controls, 1 h after the administration of 2-chloroethanol (30 mg/kg, i.p.). (2) The acute LD50 of retrorsine to rats (42 mg/kg) is increased by pretreatment with cysteine to 83 mg/kg and decreased by pre-treatment with chloroethanol to 23 mg/kg. In all three groups, deaths are accompanied by haemorrhagic centrilobular necrosis of the liver. (3) 2 h after the administration of retrorsine to rats (60 mg/kg), the levels of pyrrolic metabolites in the livers of animals pre-dosed with cysteine or chloroethanol are respectively about 60% and 200% those of rats given no pre-treatment. (4) Neither in the normal nor in the pre-treated rats dose retrorsine (60 mg/kg) cause a detectable fall in liver glutathione concentration 0.5-4 h after dosing. By 24 h, the glutathione concentration in the livers of the retrorsine-dosed rats is higher than those of the corresponding controls. There was no significant change in the liver weights of the treated rats relative to the controls. (5) Treatment of rats with retrorsine (60 mg/kg) causes a fall in the liver concentrations of cytochrome P-450, 24 h after dosing. This loss of cytochrome P-450 is increased in rats pre-treated with chloroethanol. The concentrations of cytochrome b5 in the same animals are not significantly reduced.  相似文献   

10.
Effect on plasma glucose concentration of Quei Fu Di Huang Wan (Quei Fu DHW), the herbal mixture widely used to treat diabetic disorder in Chinese traditional medicine, was investigated in diabetic rats deficient in insulin. Changes of plasma glucose in streptozotocin-induced diabetic rats (STZ-diabetic rats) receiving repeated oral administration of Quei Fu DHW were determined. Also, the mRNA level (by Northern blotting) and protein level (by Western blotting) of phosphoenolpyruvate carboxykinase (PEPCK) in liver from STZ-diabetic rats were measured to compare differences between groups receiving repeated oral administration of Quei Fu DHW, metformin, and two active herbs (Zou Guei or Fuzei) at effective dosages. In STZ-diabetic rats, acute oral administration of Quei Fu DHW decreased the plasma glucose level significantly in a dose-dependent manner from 5 mg/kg to 26.0 mg/kg. Similar treatment with Quei Fu DHW also brought on a plasma glucose-lowering effect in normal rats, although the effectiveness was not as significant as in STZ-diabetic rats. Repeated oral treatment of Quei Fu DHW at 26 mg/kg every 8 h, three times daily for 3 days, produced a plasma glucose-lowering activity similar to that of metformin-treatment in STZ-diabetic rats. Oral administration of Zou Guei (Cinnamomi Cortex) or Fuzei (Aconiti Tuber), the individual constituent of Quei Fu DHW, at the dose of 50 mg/kg into STZ-diabetic rats for 3 days normalized hyperglycemia. Similar to the repeated treatment with Quei Fu DHW, Fuzei at the effective dose reversed the elevated mRNA and protein levels of PEPCK in liver from STZ-diabetic rats. This is consistent with findings that metformin restored the increased gene expression of PEPCK in liver from STZ-diabetic rats. However, the gene expression of PEPCK in STZ-diabetic rats was not influenced by similar treatment with Zou Guei. The present study found that oral administration of Quei Fu DHW could decrease hepatic gluconeogenesis in a way similar to metformin in lowering plasma glucose in diabetic rats lacking insulin. Thus, this preparation may be a helpful adjuvant for the treatment of diabetic disorders in clinical practice.  相似文献   

11.
The effect of 4-hydroxyaminoquinoline-1-oxide (4-HAQO) on DNA synthesis in the pancreas and liver, target and non-target organs for 4-HAQO carcinogenesis, respectively, were compared. Pancreatic and liver DNA synthesis were simultaneously induced in rats fed a protein deficient diet containing 0.5% DL-ethionine for 18 days, and DNA synthesis in both tissues was inhibited by hydroxyurea. A single i.v. injection of 4-HAQO at a dose of 7 mg/kg body weight also inhibited DNA synthesis in both tissues within 4 h. In the pancreas the inhibition was maximum at a dose of 7 mg/kg, and DNA synthesis was less than in the pancreas of rats fed a control grain diet. This inhibition continued for the subsequent 5 days which were tested. In the liver, the degree of inhibition was less than in pancreas but the value remained higher than in rats fed control diet. The inhibition of liver DNA synthesis at a dose of 7 mg/kg completely recovered within 1 day. These results suggest that the lesions of DNA induced by 4-HAQO and its repair might be different between the pancreas and the liver. A pancreatic chemical carcinogen, 4-HAQO, might thus have the same cytotoxic effect that liver carcinogens have toward the liver resulting in failure to respond to mitotic stimuli. This might be causally related to the organotropism of 4-HAQO toward the pancreas.  相似文献   

12.
In rats to which E. coli endotoxin (250 micrograms/kg i.p.) was administered 24 h before they were given tetrachlormethane (CCl4) (1.5 ml/kg intragastrically), stimulation of liver DNA synthesis was observed during the first 48 h after administration of the hepatatoxin. In experimental rats to which prodigiosan (a Serratia marcescens polysaccharide, 250 micrograms/kg i.p.) was administered 24 h before CCl4 (1.5 ml/kg i.p.), liver damage 24 h after CCl4 poisoning was expressed less--judging from the size of liver necrosis and the size of glycogen-free zones in the liver lobules than in the controls. To elucidate the role of activated macrophages in the induction of liver resistance to CCl4, liver injury caused by this hepatotoxin was compared after the pre-administration of protein extract from the Kupffer cells or hepatocytes of prodigiosan-stimulated rats. In rats given the larger dose of Kupffer cell extract (6 mg/ml i.p.), the necrotic foci formed after the administration of CCl4 were significantly smaller. The results confirm the conception that liver macrophages participate in the development of resistance to CCl4.  相似文献   

13.
In this present study, the duration of melatonin (Mel) administered to diabetic rats was prolonged so as to examine its effects on the biochemical liver parameters of diabetic rats. In the experiment, Male Sprague Dawley rats were divided randomly into five groups; the control, diabetic + Mel, diabetic, diabetic + insulin, and diabetic + Mel + insulin. Diabetes mellitus was induced by administration of a single dose of streptozotocin (60 mg/kg) intraperitoneally and rats were given vehicle as a solvent for Mel every day for 12 weeks. In the diabetic + Mel group, diabetic rats were administered Mel (10 mg/kg/day) for 12 weeks to treat diabetes. The diabetic + insulin group were diabetic rats given insulin (6 U/kg) subcutaneously for 12 weeks. The diabetic + Mel + insulin rats received insulin and Mel at the same dose and time. At the end of the experiment, the animals were decapitated and liver tissues were taken. The protective effect of Mel on liver tissue of diabetic rats was investigated, total antioxidant status, total oxidant status, reactive oxygen species, oxidative stress index, adenosine deaminase, xanthine oxidase, paraoxonase 1, sodium/potassium ATPase, myeloperoxidase, γ-glutamyl transferase, sorbitol dehydrogenase, tumor necrosis factor-alpha, homocysteine, nitric oxide, glucose-6-phosphate dehydrogenase, and glycoprotein levels were determined in liver tissues. Treatment with Mel and/or insulin has been found to have a protective effect on biochemical parameters. The results showed that administration of Mel to diabetic rats prevented the distortion of the studied biochemical parameters of liver tissues.  相似文献   

14.
目的:观察慢性吗啡处理及戒断后大鼠杏仁核中Parvalbumin(PV)的表达变化,为其功能的研究提供形态学依据。方法:将30只健康雄性SD大鼠随机分为吗啡依赖组和生理盐水对照组。吗啡依赖组大鼠腹膜腔注射吗啡,2次/d,起始剂量为5 mg/kg,逐日递增5mg,至第10d为50mg/kg;对照组注射同体积的生理盐水。于末次注射后动物分别存活3h、3 d和14d。用免疫组化方法和相对平均灰度值检测杏仁核内PV的表达。结果:在生理盐水处理组各存活时间点,杏仁核内PV的表达相同。和生理盐水对照组相比,3h时杏仁核内PV的表达明显增加(P<0.05)。第3d时,杏仁核内PV的表达减少,明显低于第3 h组(P<0.05)。至第14d时,PV的表达又开始增加,明显高于第3 d组(P<0.05)。结论:本结果提示慢性吗啡处理及戒断后杏仁核PV的表达具有时相特异性;这种变化在戒断早期可能主要与躯体依赖相关,而戒断晚期主要与精神依赖相关。  相似文献   

15.
This study was to evaluate the effects of thalidomide on expression of adhesion molecules in liver cirrhosis. The cirrhosis was induced in Wistar rats by intraperitoneal injection of CCl(4), and thalidomide (10 mg/kg/day or 100 mg/kg/day) was given by intragastric administration for 8 weeks. Liver histopathology and immunohistochemistry were significantly improved and the expressions of ICAM-1, VCAM-1, E-selectin, and TNF-alpha mRNA and protein were decreased significantly in rats treated with a high dose of thalidomide. Close positive correlation was observed in the expression of the TNF-alpha mRNA and that of ICAM-1, VCAM-1, and E-selectin mRNA, respectively. These results indicate that thalidomide exerts its effect on the downregulation of adhesion molecules via TNF-alpha signaling pathway to inhibit liver fibrosis.  相似文献   

16.
DNA microarray technology was developed as a tool for simultaneously measuring a number of gene expression changes, and has been applied for investigations of toxicity assessments of chemicals. In this study, we used a typical hepatotoxicant, thioacetamide (TA), to find correlations between the extent of hepatotoxicity and certain gene expression patterns or specific gene expression profiles. TA was intraperitoneally administered at high (400 mg/kg), medium (150 mg/kg) or low (50 mg/kg) dose (four rats per group) and then the serum and liver were collected at the indicated time (6, 12, 24, 36 and 48 h). Serum biochemical markers were measured and hepatic mRNA expression profiles were analyzed by a DNA microarray. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased by TA-administration in a dose-dependent manner and reached the maximum at 24h. Hierarchical clustering analysis of all dosage groups revealed in 2 major clusters, distinguished by an early (6 and 12h) and a late (24, 36 and 48 h) phase. The early and late phase clusters were sorted in time- and dose-dependent manners. The major gene expression profile obtained by quality-threshold (QT) clustering analysis showed the same maximal toxic time as that estimated by the serum biochemical markers. The individual expression profiles of the candidate genes selected in our previous studies and the simultaneous gene expression patterns measured by five typical hepatotoxicants including TA also reflected the hepatotoxicity of TA. These findings suggest that the potential toxic effects appearing as gene expression changes are independent of the dosage of TA. This study suggested that the major gene expression profile estimated by QT clustering would be a sensitive marker of hepatotoxicity.  相似文献   

17.
Resveratrol, a polyphenolic compound found in grape skin and peanuts has been shown to prevent many diseases including cardiovascular diseases and cancer. To better understand resveratrol's potential in vivo toxicity, we studied the dose response using cDNA stress arrays coupled with drug metabolizing enzymatic (DME) assays to investigate the expression of stress-responsive genes and Phase I and II detoxifying enzymes in rat livers. Male and female CD rats were treated with high doses of resveratrol (0.3, 1.0 and 3.0 gm/kg/day) for a period of 28 days. Total RNA from rat liver was reverse-transcribed using gene-specific primers and hybridized to stress-related cDNA arrays. Among female rats, Phase I DME genes were repressed at 0.3 and 1.0 gm/kg/day doses, while genes such as manganese superoxide dismutase, cytochrome P450 reductase, quinone oxidoreductase and thiosulfate sulfurtransferase demonstrated a dose-dependent increase in gene expression. The modulation of these liver genes may implicate the potential toxicity as observed among the rats at the highest dose level of resveratrol. Real-Time PCR was conducted on some of the Phase II DME genes and anti-oxidant genes to validate the cDNA array data. The gene expression from real-time PCR demonstrated good correlation with the cDNA array data. UGT1A genes were amongst the most robustly induced especially at the high doses of resveratrol. We next performed Phase I and Phase II enzymatic assays on cytochrome P450 2E1 (CYP2E1), cytochrome P450 1A1 (CYP1A1), NAD(P)H:quinone oxidoreductase (NQO1), glutathione S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Induction of Phase II detoxifying enzymes was most pronounced at the highest dose of resveratrol. CYP1A1 activity demonstrated a decreasing trend among the 3 dose groups and CYP2E1 activity increased marginally among female rats over controls. In summary, at lower doses of resveratrol there are few significant changes in gene expression whereas the modulation of liver genes at the high dose of resveratrol may implicate the potential toxicity observed.  相似文献   

18.
Acute inflammation induced by endotoxin (LPS) administration inhibits insulin-like growth factor (IGF-I) and growth hormone (GH) secretion. The aim of this study was to elucidate the role of glucocorticoids and nitric oxide (NO) in the effect of LPS on hypothalamic somatostatin gene expression. Adult male Wistar rats were injected with different doses of LPS (5, 10 and 100 microg/kg). Rats received two i.p. injections of LPS (at 17:30 and 8:30 h the following day) and were killed 4 h after the second injection. LPS administration at the dose of 100 microg/kg increased the hypothalamic somatostatin mRNA content, as well as the serum concentrations of corticosterone. Glucocorticoids do not seem to be involved in LPS-induced increase in hypothalamic somatostatin mRNA since adrenalectomy did not prevent this effect. In order to analyze the possible effect of NO, aminoguanidine, an inducible nitric oxide synthase inhibitor, was injected (100 mg/kg s.c.) simultaneously with LPS injection. Aminoguanidine administration did not modify somatostatin mRNA in saline injected rats, but it prevented LPS-induced increase in hypothalamic somatostatin mRNA. These data suggest that the stimulatory effect of endotoxin on hypothalamic somatostatin gene expression is not mediated by glucocorticoids, but instead by the increase in NO release.  相似文献   

19.
D-fenfluramine, an anorectic agent in rats and man, was administered daily at doses 1.25, 2.5, 5 or 10 mg/kg/day for 10 days, and sacrificed 6 days later. Hypothalamic serotonin (5-HT) levels were unchanged in rats receiving 1.25-5 mg/kg/day of d-fenfluramine but reduced by 22% (p less than 0.01) at the highest drug dose (10 mg/kg/day); hypothalamic 5-hydroxyindole acetic acid (5-HIAA) levels were reduced by 15% (p less than 0.05) or 28% (p less than 0.01) in rats receiving 5 or 10 mg/kg/day of the drug, respectively. Hypothalamic slices prepared from rats which were previously treated with any of the drug doses spontaneously released endogenous 5-HT at rates that did not differ from those of vehicle-treated rats. 5-HT released with electrical field-stimulation was unaffected by prior d-fenfluramine treatment at doses of 1.25-5 mg/kg/day, and was reduced by 20% (p less than 0.05) from slices prepared from rats which received 10 mg/kg/day. 5-HIAA efflux was also attenuated by the highest drug dose. These data indicate that chronic administration to rats of customary anorectic doses of d-fenfluramine (i.e. 0.06-1.25 mg/kg) fail to cause long-lasting reductions in brain 5-HT release.  相似文献   

20.
This study investigated the potential adverse effects of tert-butyl acetate (TBAc) on maternal toxicity and embryo-fetal development after maternal exposure of pregnant rats from gestational days 6 through 19. TBAc was administered to pregnant rats by gavage at 0, 400, 800, and 1,600 mg/kg/day. All dams were subjected to a Caesarean section on day 20 of gestation, and their fetuses were examined for any morphological abnormalities. At 1,600 mg/kg, maternal toxicity manifested as increases in the incidence of clinical signs and death, lower body weight gain and food intake, increases in the weights of adrenal glands and liver, and a decrease in thymus weight. Developmental toxicity included a decrease in fetal weight, an increase in the incidence of skeletal variation, and a delay in fetal ossification. At 800 mg/kg, only a minimal developmental toxicity, including an increase in the incidence of skeletal variation and a delay in fetal ossification, were observed. In contrast, no adverse maternal or developmental effects were observed at 400 mg/kg. These results show that a 14-day repeated oral dose of TBAc is embryotoxic at a maternally toxic dose (i.e., 1,600 mg/kg/day) and is minimally embryotoxic at a nonmaternally toxic dose (i.e., 800 mg/kg/day) in rats. However, no evidence for the teratogenicity of TBAc was noted in rats. It is concluded that the developmental findings observed in the present study are secondary effects to maternal toxicity. Under these experimental conditions, the no-observed-adverse-effect level of TBAc is considered to be 800 mg/kg/day for dams and 400 mg/kg/day for embryo-fetal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号